Surat Keputusan Direktur Jenderal Pendidikan Tinggi, Riset, dan Teknologi, Nomor: 200/M/KPT/2020 Masa berlaku mulai Volume 9 Nomor 1 Tahun 2019 sampai Volume 13 Nomor 2 Tahun 2023 Terbit online pada laman: https://ojs.stmikplk.ac.id/index.php/saintekom/index

JURNAL **SAINTE KOM**Sains, Teknologi, Komputer, dan Manajemen

Sistem Smart Trash Pemilah Sampah Organik dan Anorganik Berbasis Internet of Things

*Ismail¹, Andi Zulkifli Nusri², Syariful Rahman³

¹⁾Sistem Informasi, Universitas Lamappapoleonro

^{2,3)} Teknik Informatika, Universitas Lamappapoleonro

Jl. Kesatria No.60 Watansoppeng, Soppeng, Sulawesi Selatan

Email: ¹ismail@unipol.ac.id, ²andizul@unipol.ac.id, ³ifulunipol18@gmail.com

ABSTRACT

Traditional trash bins have an impact on the accumulation of waste and the mixing of organic and inorganic waste so that it can damage the environment. This research aims to make it easier to sort organic and inorganic organic waste with three stages, namely Hardware design, program creation, and tool testing. Arduino microcontroller, Node MCU ESP8266. The ultrasonic sensor reads the presence of object in front of the sensor then servo opens the trash can lid, and the garbage is put in the trash can. The capacitive proximity sensor reads the type of garbage if the garbage is organic the servo will rotate 900 to the left and vice versa if the garbage is inorganic type the servo will rotate 1800 to the right. The smart trash system is equipped with a sensor monitoring the contents of the trash can, if the trash can is full, system sends a message to the officer. The system development method uses the SDLC method and the tool testing method uses the Black Box method. Based on the results of system testing with five trials, the average accuracy value is 96%. The contribution of this research provides new innovations in managing waste automatically.

Keywords: Arduino; Internet of Things; Organic and non-organic waste sorting; Smart Trash System

ABSTRAK

Tempat sampah masih tradisional berdampak pada penumpukan sampah dan tercampurnya sampah organik dan anorganik sehingga dapat merusak lingkungan. Penelitian ini bertujuan untuk mempermudah memilah sampah organik dan anorganik organik dengan tiga tahapan yaitu perancangan Hardware, pembuatan program, dan pengujian alat. Rangkaian alat dan sensor terdiri dari servo dan 2x16 proximity kapasitif, microcontroller Arduino, NodeMCU ESP8266. Sensor ultrasonik membaca adanya objek didepan sensor maka servo membuka tutup tempat sampah, dan sampah dimasukkan ketempat sampah sensor kapasitif proximity membaca jenis sampah jika sampah organik servo akan berputar 90° kekiri dan begitu pula sebaliknya jika sampah tersebut berjenis anorganik servo akan berputar 180° kekanan. Sistem smart trash dilengkapi dengan sensor monitoring isi tempat sampah, apabila tempat sampah sudah penuh, sistem mengirim pesan kepada petugas. Metode pengembangan sistem menggunakan metode SDLC dan metode pengujian alat menggunakan metode Black Box. Berdasarkan hasil pengujian sistem dengan percobaan sebanyak lima kali didapatkan nilai rata-rata akurasi sebesar 96%. Kontribusi penelitian ini memberikan inovasi baru dalam mengelola sampah secara otomatis.

Kata kunci : Arduino; Internet of Things; Pemilah Sampah Organik dan Anorganik; Sistem Smart Trash

1. PENDAHULUAN

Sampah adalah sisa-sisa benda atau barang yang telah digunakan manusia. Sampah bisa dibagi menjadi dua bentuk yaitu organik dan anorganik (Kai et al., 2018). Sampah organik adalah sampah yang terbentuk dari zatzat organik dan dapat diuraikan. Contoh sampah ini adalah daun rontok, kertas (Susilowati et al., 2021). Sedangkan sampah anorganik adalah sampah yang berasal dari benda-benda yang tidak dapat diuraikan (Oktariyani Dasril, 2018). Contohnya adalah plastik, kaleng, dan lain-lain.

Masyarakat Indonesia sering dihadapkan pada permasalahan sosial yang salah satunya adalah tentang sampah. pengelolaan Pengelolaan sampah yang benar diharapkan dapat dilakukan dari hulu hingga ke hilirnya. Pengelolaan sampah dari hulu adalah yang berasal dari penghasil sampah tahap pertama seperti rumah tangga dan badan usaha (Agus et al., 2019). Salah satu permasalahan yang perlu diperhatikan terkait pengelolaan sampah ialah permasalahan pembuangan serta pengangkutannya. Bencana banjir merupakan salah satu akibat dari penimbunan sampah yang begitu banyak yang memungkinkan memakan

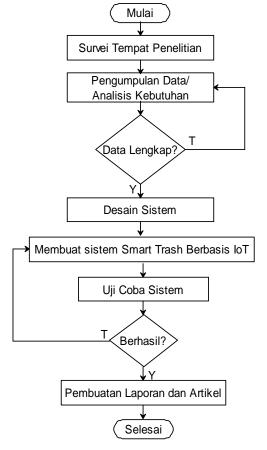
korban jiwa (Mukhtar et al., 2020). Hal ini tentunya sangat mengkhawatirkan. Belum lagi ada akibat lain yaitu dapat menyebabkan pencemaran lingkungan, wabah penyakit dan memunculkan bau busuk yang menyengat (Dwiyana Putra et al., 2021).

Pemerintah leworeng desa kabupaten soppeng telah melakukan berbagai cara untuk mengelola sampah seperti menyediakan bank sampah, menyediakan mobil pengangkut sampah dan menyediakan tempat sampah dimasing-masing rumah penduduk. Namun pengelolaan sampah masih menjadi masalah terutama metode pembuangan sampah oleh masyarakat di tempat sampah masing-masing masih tercampur sehingga sampah susah dipilah untuk dikelompokkan sampah yang bisa didaur ulang.

Untuk itu perlu pengolahan sampah dengan cara memilah sampah sesuai dengan jenis, jumlah dan, sifat sampahnya. Tujuan pemilahan sampah ini adalah agar sampah yang masuk ke Tempat Pembuangan Akhir (TPA) sudah dikurangi jumlahnya dengan tujuan mengurangi beban tampung TPA dan sampah yang bisa didaur ulang dapat diangkut langsung ke bank

sampah (Wahyudinata & Dirgantara, 2020).

Beberapa penelitian sebelumnya telah membuat sistem pengelolaan sampah. Pertama Otomatisasi pemilah sampah berbasis Arduino uno (Widodo & Suleman, 2020). Penelitian ini belum dilengkapi dengan sensor pendeteksi objek untuk membuka pintu tempat sampah secara otomatis dan belum berbasis iot sehingga belum ada informasi secara jarak jauh didapatkan oleh petugas kebersihan. Kedua Tempat berbasis sampah otomatis mikrokontroler Arduino (Sanjaya et al., 2022). Sistem ini belum dilengkapi sensor untuk memilah sampah sehingga sampah masih tercampur.


Dari uraian diatas maka dibuat salah satu solusinya adalah merancang membangun pemilah dan sampah otomatis berbasis *Iot*. Alat pemilah sampah otomatis ini memanfaatkan teknologi mikrokontroler untuk memilah sampah berdasarkan jenis sampah yang teridentifikasi, seperti sampah organik dan anorganik berbasis *Iot* dengan kemampuan mendeteksi jenis sampah menggunakan teknologi sensor kapasitif proximity.

Tujuan penelitian ini untuk perancangan sistem *smart trash* pemilah sampah berbasis *internet of things* yang dapat memudahkan pengelolaan sampah pada desa leworeng. Kontribusi hasil penelitian ini dapat memberikan inovasi baru pada masyarakat dalam mengelola sampah, khususnya pemilah sampah otomatis.

2. METODE

2.1. Tahapan Penelitian

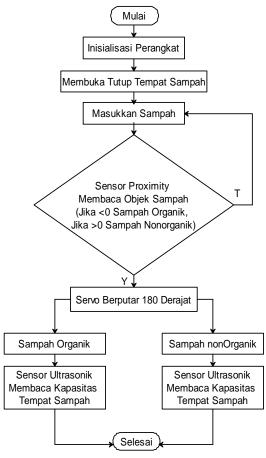
Berikut tahapan penelitian dalam bentuk *flowchart* seperti Gambar 1.

Gambar 1. Tahapan Penelitian

Adapun penjelasan dari Gambar 1 yaitu melakukan survei tempat penelitian pada desa leworeng kabupaten soppeng. Setelah dilakukan survei, selanjutnya dilakukan analisis kebutuhan data. Ketika data sudah lengkap, dilakukan desain sistem yang akan dibangun. Selanjutnya dilakukan Pembuatan Sistem smart trash berbasis Internet of things. Setelah dilakukan pembuatan sistem, akan dilakukan uji coba sistem di lapangan, apakah Sistem smart trash berbasis Internet of things di Desa Leworeng Kabupaten Soppeng berjalan dengan baik atau belum, ketika belum berjalan dengan baik maka perbaikan dilakukan pada tahap Setelah pembuatan sistem. sistem dengan baik dan berjalan benar, selanjutnya dibuat laporan penelitian dan jurnal untuk dipublikasi sebagai bentuk target luaran.

2.2. Metode Pengumpulan Data

a. Observasi


Dengan melakukan pengamatan langsung pada Desa Leworeng Kabupaten Soppeng. Dari hasil observasi peneliti dapat memperoleh data—data yang nantinya akan menjadi referensi baik dalam perancangan dan pembuatan sistem.

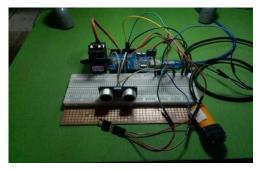
b. Studi Pustaka

Pengumpulan data dengan cara mempelajari buku-buku, artikel, jurnal, berita, dll yang dianggap relevan dan dapat mendukung dalam proses penelitian (Suherman, 2023).

2.3. Metode Perancangan Sistem

Perancangan sistem di gambarkan rancangan dengan model Diagram *Flowchart* (Tahir & Usman, 2023). Berikut Gambar 2 *Flowchart* Sistem *smart trash* berbasis *Internet of things* di Desa Leworeng Kabupaten Soppeng.

Gambar 2. Flowchart Rancangan Sistem


Adapun penjelasan Gambar 2 yaitu inisialisasi perangkat, ini dimaksudkan apakah perangkat sudah terpasang dengan benar sesuai dengan skematik rangkaian. Membuka wadah sampah sensor kapasitif tempat proximity membaca objek. Jika objek (sampah) tidak terbaca oleh sensor kapasitif proximity maka sensor akan tidak bergerak yang menandakan tidak terbaca nya sampah organik. Jika sensor kapasitif proximity membaca objek (sampah) terbaca oleh sensor kapasitif proximity maka sensor akan 90^{0} posisi bergerak pada yang menandakan objek tersebut sampah Jika sensor ultrasonik organik. membaca sampah telah penuh akan mengirim informasi ke Hp. Sensor proximity digunakan untuk membaca setiap jenis sampah, yaitu sampah organik dan anorganik.

3. HASIL DAN PEMBAHASAN

Hasil penelitian sistem *smart trash* dibangun menggunakan beberapa rangkaian alat. Berikut hasil penelitian yang telah dilakukan:

3.1. Rangkaian Alat Pemilah Sampah

Berikut Gambar 3 rangkaian alat pemilah sampah pada sistem *smart trash*.

Gambar 3. Rangkaian Alat

Adapun penjelasan Gambar 3 diatas yaitu Sensor Kapasitif *proximity* akan membaca apakah sampah tersebut di golongan Organik Atau Anorganik. Servo menerima Data bekerja sesuai perintah yang diterima, kemudian diteruskan ke tempat sampah organik dan anorganik.

3.2. Implementasi Sistem

Tahap implementasi sistem merupakan hasil implementasi teknologi yang sudah dirancang. Teknologi sistem pemilah sampah organik dan anorganik menggunakan diimplementasikan rangkaian sistem, yaitu sensor proximity dipasang pada tempat sampah yang sudah didesain, sensor ini berguna untuk membaca jenis sampah. Dari hasil pembacaan jenis sampah dipilah menjadi dua jenis yaitu sampah organik dan anorganik. Secara keseluruhan sistem pemilah sampah telah bekerja dengan baik dan dapat memilah otomatis jenis sampah. Berikut Gambar 4 hasil implementasi sistem teknologi pemilah sampah.

Gambar 4. Objek didepan Sensor

3.3. Pengujian Sistem

Sistem *smart trash* dilakukan pengujian untuk memastikan rangkaian alat berjalan dengan baik. Berikut hasil pengujian sistem disajikan pada Tabel 1, Tabel 2, dan Tabel 3.

Tabel 1. Hasil pengujian sampel sampah

No	Sampah	Organik	Anorganik	Ket.
1	Kertas	0	1	Terbaca Anorganik
2	Koran	0	1	Terbaca Anorganik
3	Daun kering	0	1	Terbaca Anorganik
4	Sisa Sayur	1	0	Terbaca Organik
5	Cabe besar	1	0	Terbaca Organik
6	Botol Minuman	0	1	Terbaca Anorganik
7	Tomat	1	0	Terbaca Organik
8	Jeruk Nipis	1	0	Terbaca Organik

(Sumber: Hasil Pengujian, 2023)

Tabel 2. pengujian ketinggian sampah Organik

No	Isi (%)	Sisa (%)	Keterangan
1	70%	20%	Belum Penuh
2	60%	40%	Belum Penuh
3	80%	20%	Belum Penuh
4	90%	10%	Sudah Penuh
5	99%	1%	Sudah penuh

(Sumber: Hasil Pengujian, 2023)

Tabel 3. pengujian ketinggian sampah Anorganik

No	Isi (%)	Sisa (%)	Keterangan
1	40%	60%	Belum Penuh
2	20%	80%	Belum Penuh
3	90%	10%	Belum Penuh
4	95%	5%	Sudah Penuh
5	99%	1%	Sudah penuh

(Sumber: Hasil Pengujian, 2023)

Pada Tabel 2 dan 3 terdapat kolom "Isi (%)" yang menunjukkan proporsi kandungan sampah organik pada tempat sampah, kolom "Sisah (%)" yang menunjukkan proporsi sisa ruang kosong, dan kolom "Keterangan" yang memberikan informasi tentang pengisian syarat sampah organik. Contoh pada baris pertama, isi sampah organik di tempat sampah mencapai 70% dan masih ada 20% ruang kosong yang belum terisi. Deskripsi menyatakan bahwa tempat sampah tidak penuh. Berikut Tabel 4 pengujian sensor ultrasonic.

Tabel 4. pengujian sensor ultrasonic

No	Sensor Ultrasonik (cm)	Penggaris (cm)	Akurasi
1	6 cm	6.2	96.7
2	8 cm	8.0	94.1
3	10 cm	10.5	95.2
4	15 cm	15.5	96.7
5	20 cm	20.5	97.5

- Rata-rata = Total Akurasi / Jumlah Sampel
- Rata-rata = 480,2/5 = 96%

Berdasarkan hasil pengujian pada Tabel 4 didapatkan nilai rata-rata akurasi sebesar 96% dengan mengambil lima sampel jarak. Diperoleh kesimpulan bahwa pembacaan sensor dengan penggaris tidak terlalu jauh.

4. KESIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan dapat ditarik kesimpulan yaitu alat pemisah sampah ini dibuat untuk membantu untuk pemisahan sampah secara otomatis dengan menggunakan sensor dan servo memindahkan sampah sesuai dengan jenisnya. Sampah yang mengandung organik motor servo akan bergerak dari posisi 0⁰ ke 90⁰ dan apabila dimasukkan sampah anorganik servo bergerak pada posisi 0⁰ ke 180⁰ derajat. Teknologi pemilah sampah berbasis *Iot* dapat memberikan informasi kondisi sampah melalui smartphone, seperti notifikasi sampah sudah penuh atau belum, dan pemantauan pemilah otomatis melalui smartphone dengan teknologi Iot.

5. UCAPAN TERIMA KASIH

Dengan terlaksananya penelitian ini tidak terlepas dari bantuan beberapa pihak. Terimakasih kepada Rektor Universitas Lamappapoleonro yang telah memberikan pendanaan sehingga penelitian ini dapat terlaksana, dan juga kepada Kepala Desa Leworeng yang telah memberikan izin untuk melakukan penelitian di desa Leworeng selama enam bulan.

DAFTAR PUSTAKA

Agus, R. N., Oktaviyanthi, R., & Sholahudin, U. (2019). 3R: Suatu Alternatif Pengolahan Sampah Rumah Tangga. *Kaibon Abhinaya*: Jurnal Pengabdian

- *Masyarakat*, *1*(2), 72. https://doi.org/10.30656/ka.v1i2. 1538
- **DWIYANA** PUTRA, I. M. Sugiartha, I. N. G., & Survani, L. P. (2021). Pengelolaan Sampah Plastik Rumah Tangga dalam Rangka Pencegahan Pencemaran Lingkungan (Study Lingkungan Kelurahan Pedungan Kecamatan Denpasar Selatan Kota Denpasar). Jurnal Konstruksi Hukum, 2(1), 86-91. https://doi.org/10.22225/jkh.2.1. 2974.86-91
- Kai, H. N., Sompie, S. R. U. A., Sambul, A. M., Elektro, T., Sam, U., Manado, R., & Manado, J. K. B. (2018).
 Aplikasi Layanan Pengangkutan Sampah Berbasis Android.
 Jurnal Teknik Informatika, 13(4), 1–12.
- Mukhtar, H., Perdana, D., Sukarno, P., & Mulyana, A. (2020). Sistem Pemantauan Kapasitas Sampah Berbasis Iot (SiKaSiT) untuk Pencegahan Banjir di Wilayah Sungai Citarum Bojongsoang Kabupaten Bandung Iot-Based Trash Capacity Monitoring SiKaSiT System () Prevention of Floods in Citarum River Bojongsoang Bandun. Jurnal Teknologi Lingkungan, 56-67. file:///D:/Download dari C/NEW **ARTICLES** TO ADD/citarumgaruda/2020/Siste Pemantauan Kapasitas Sampah Berbasis *Iot* (SiKaSiT) untuk Pencegahan Banjir di Wilayah Sungai Citarum Bojongsoang Kabupaten Bandung.pdf
- Oktariyani Dasril, R. F. Y. (2018). Sosialisasi Pemilahan Sampah

- Organik dan Anorganik pada Siswa SD 05 Tigo Tanjung Talawi. *Jurnal Abdimas Saintika*, *I*(1), 1–8. http://jurnal.syedzasaintika.ac.id /index.php/abdimas/article/view/ 853
- Sanjaya, H., Daulay, N. K., Trianto, J., & Andri, R. (2022). Tempat Sampah Otomatis Berbasis Mikrokontroler Arduino. JURIKOM (Jurnal Riset Komputer), 9(2), 451. https://doi.org/10.30865/jurikom.v9i2.4058
- Suherman, I. (2023). Sistem Pendukung Keputusan Penerima Beasiswa Sdn 165 Asanae Menggunakan Metode Simple Additive Weighting Sistem Pendukung Keputusan Penerima Beasiswa di Sdn 165 Asanae Menggunakan Metode Simple Additive Weighting. JURNAL **SISTEM INFORMASI** DAN**TEKNIK** KOMPUTER, 8(1), 226-232.
- Susilowati, L. E., Arifin, Z., & Kusumo, B. H. (2021). Pengomposan Sampah Organik Rumah Tangga Dengan Dekomposer Lokal Di Desa Narmada, Kabupaten Lombok Barat. *Jurnal Masyarakat Mandiri*, *5*(1), 34–45.http://journal.ummat.ac.id/ind ex.php/jmm/article/view/3190
- Tahir, M. A., & Usman, Y. (2023). Sistem Informasi Cuti Pegawai Di Kantor Dinas Pendidikan Pemuda Dan Olah Raga Kabupaten Soppeng. *Jurnal Ilmiah Sistem Informasi Dan Teknik Informatika (JISTI)*, 6(1), 34–42.
- Wahyudinata, A., & Dirgantara, H. B. (2020). Pengembangan Gim

Edukasi 2D Pemilahan Sampah Daur Ulang Berbasis Android. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(1), 129-

138.https://doi.org/10.30812/mat rik.v20i1.860

Widodo, A. E., & Suleman, S. (2020). Otomatisasi Pemilah Sampah Berbasis Arduino uno. Indonesian Journal on Software *Engineering (IJSE)*, *6*(1), 12–18. https://doi.org/10.31294/ijse.v6i 1.7781