Sistem Klasifikasi Monitoring dan Evaluasi Kelayakan Penerima Beasiswa UAD Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.33020/saintekom.v13i2.428Keywords:
KIP Scholarship in UAD, Data Mining, classification, Naïve Bayes, Confusion MatrixAbstract
Kartu Indonesia Pintar (KIP) scholarship program at Ahmad Dahlan University includes a monitoring and evaluation internal process conducted at the end of each semester to monitor scholarship recipients. This allows for an assessment of their eligibility to receive the scholarship in the upcoming semester. The current manual MONEVIN process results in a time-consuming and less objective eligibility analysis. This eligibility determination system is needed, utilizing data mining techniques based on previous KIP scholarship recipient data to make predictions. Naïve Bayes algorithm, a data mining technique employing mathematical probability calculations, is utilized. The process begins with preprocessing, followed by data mining, evaluation, system implementation, and testing using System Usability Scale. The research uses a dataset of 270 student records, employing a 9-fold cross-validation process to split the data. Implemented model is integrated into a website-based system accessible to Biro Kemahasiswaan dan Alumni (BIMAWA). Model testing employs the Confusion Matrix technique, resulting in an accuracy score of 0.985, precision of 0.987, recall of 0.985, and an F-score of 0.985, indicating a favorable classification outcome. The system's eligibility assessment is further tested using the SUS, yielding a score of 90. Therefore, it can be concluded that the developed system is suitable for use.
Downloads
References
Abdullah, L., Tamin, R., & Qashlim, A. A. A. (2021). KLASIFIKASI PENERIMAAN BEASISWA MENGGUNAKAN ALGORITMA NAIVE BAYES DI UNIVERSITAS AL ASYARIAH MANDAR KABUPATEN POLEWALI MANDAR. 3(1). doi: 10.35329/jp.v3i1.1399
Abidin, Z., Fredyatama, Y., Teknik Informasi, P., Tinggi Teknik Pati Jl Raya Pati-Trangkil, S. K., & Jawa Tengah, P. (2021). Klasifikasi Daun Empon-Empo Menggunakan Metode Gray Level Co-Occurrence Matrix Dan Algoritma K-Nn. Jurnal Sains, Teknologi Dan Industri, 18(02), 261–267. doi: dx.doi.org/10.24014/sitekin.v18i2.12913
Alita, D., Sari, I., & Rahman Isnain, A. (2021). Penerapan Naïve Bayes Classifier Untuk Pendukung Keputusan Penerima Beasiswa. Jdmsi, 2(1), 702022. doi: doi.org/10.55606/jitek.v1i2.378
Andika, L. A., Azizah, P. A. N., & Respatiwulan, R. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier. Indonesian Journal of Applied Statistics, 2(1), 34. doi: 10.13057/ijas.v2i1.29998
Damuri, A., Riyanto, U., Rusdianto, H., & Aminudin, M. (2021). Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako. Jurnal Riset Komputer, 8(6), 219–225. doi: 10.30865/jurikom.v8i6.3655
Hozairi, Anwari, & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. doi: 10.21107/nero.v6i2.237
Kemdikbud, P. W. (n.d.). KIP Kuliah Merdeka: Akses Pendidikan Tinggi Semakin Merata dan Berkualitas. Retrieved from https://www.kemdikbud.go.id/main/blog/2021/03/kip-kuliah-merdeka-akses-pendidikan-tinggi-semakin-merata-dan-berkualitas
Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49. doi: 10.30865/mib.v6i1.3312
Mutawalli, L., Zaen, M. T. A., & Bagye, W. (2019). KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto). Jurnal Informatika Dan Rekayasa Elektronik, 2(2), 43. doi: 10.36595/jire.v2i2.117
Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. doi: 10.24114/cess.v4i1.11458
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711. doi: http://dx.doi.org/10.30645/j-sakti.v5i2.369
Noviyanto, H., & Mukti, B. (2021). IMPLEMENTASI ALGORITME NAÏVE BAYES UNTUK MENENTUKAN KELAYAKAN CALON. Jurnal Informatika Dan Teknologi Komputer, 1(2), 7–12. doi: doi.org/10.55606/jitek.v1i2.378
Ramadhan, D. W., Soedijono, B., & Pramono, E. (2019). PENGUJIAN USABILITY WEBSITE TIME EXCELINDO MENGGUNAKAN SYSTEM USABILITY SCALE ( SUS ) ( STUDI KASUS?: WEBSITE TIME EXCELINDO ). 04, 139–147.
Shianto, K. A., Gunadi, K., & Setyati, E. (2019). Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R-CNN. Jurnal Infra, 7(1), 157–163. Retrieved from http://publication.petra.ac.id/index.php/teknik-informatika/article/view/8065
Sumiah, A., & Mirantika, N. (2020). Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan. 6(April). doi: doi.org/10.25134/buffer.v6i1.2907
Suyanto, D. (2019). Data Mining untuk klasifikasi dan klasterisasi data.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dyllan Bagus Siswanto, Dwi Normawati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.


