Sistem Klasifikasi Monitoring dan Evaluasi Kelayakan Penerima Beasiswa UAD Menggunakan Algoritma Naïve Bayes

Authors

  • Dyllan Bagus Siswanto Universitas Ahmad Dahlan
  • Dwi Normawati Universitas Ahmad Dahlan

DOI:

https://doi.org/10.33020/saintekom.v13i2.428

Keywords:

KIP Scholarship in UAD, Data Mining, classification, Naïve Bayes, Confusion Matrix

abstract

Kartu Indonesia Pintar (KIP) scholarship program at Ahmad Dahlan University includes a monitoring and evaluation internal process conducted at the end of each semester to monitor scholarship recipients. This allows for an assessment of their eligibility to receive the scholarship in the upcoming semester. The current manual MONEVIN process results in a time-consuming and less objective eligibility analysis. This eligibility determination system is needed, utilizing data mining techniques based on previous KIP scholarship recipient data to make predictions. Naïve Bayes algorithm, a data mining technique employing mathematical probability calculations, is utilized. The process begins with preprocessing, followed by data mining, evaluation, system implementation, and testing using System Usability Scale. The research uses a dataset of 270 student records, employing a 9-fold cross-validation process to split the data. Implemented model is integrated into a website-based system accessible to Biro Kemahasiswaan dan Alumni (BIMAWA). Model testing employs the Confusion Matrix technique, resulting in an accuracy score of 0.985, precision of 0.987, recall of 0.985, and an F-score of 0.985, indicating a favorable classification outcome. The system's eligibility assessment is further tested using the SUS, yielding a score of 90. Therefore, it can be concluded that the developed system is suitable for use.

Downloads

Download data is not yet available.

Author Biography

Dwi Normawati, Universitas Ahmad Dahlan

Lecture Of Ahmad Dahlan Univeristy

References

Abdullah, L., Tamin, R., & Qashlim, A. A. A. (2021). KLASIFIKASI PENERIMAAN BEASISWA MENGGUNAKAN ALGORITMA NAIVE BAYES DI UNIVERSITAS AL ASYARIAH MANDAR KABUPATEN POLEWALI MANDAR. 3(1). doi: 10.35329/jp.v3i1.1399

Abidin, Z., Fredyatama, Y., Teknik Informasi, P., Tinggi Teknik Pati Jl Raya Pati-Trangkil, S. K., & Jawa Tengah, P. (2021). Klasifikasi Daun Empon-Empo Menggunakan Metode Gray Level Co-Occurrence Matrix Dan Algoritma K-Nn. Jurnal Sains, Teknologi Dan Industri, 18(02), 261–267. doi: dx.doi.org/10.24014/sitekin.v18i2.12913

Alita, D., Sari, I., & Rahman Isnain, A. (2021). Penerapan Naïve Bayes Classifier Untuk Pendukung Keputusan Penerima Beasiswa. Jdmsi, 2(1), 702022. doi: doi.org/10.55606/jitek.v1i2.378

Andika, L. A., Azizah, P. A. N., & Respatiwulan, R. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier. Indonesian Journal of Applied Statistics, 2(1), 34. doi: 10.13057/ijas.v2i1.29998

Damuri, A., Riyanto, U., Rusdianto, H., & Aminudin, M. (2021). Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako. Jurnal Riset Komputer, 8(6), 219–225. doi: 10.30865/jurikom.v8i6.3655

Hozairi, Anwari, & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. doi: 10.21107/nero.v6i2.237

Kemdikbud, P. W. (n.d.). KIP Kuliah Merdeka: Akses Pendidikan Tinggi Semakin Merata dan Berkualitas. Retrieved from https://www.kemdikbud.go.id/main/blog/2021/03/kip-kuliah-merdeka-akses-pendidikan-tinggi-semakin-merata-dan-berkualitas

Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49. doi: 10.30865/mib.v6i1.3312

Mutawalli, L., Zaen, M. T. A., & Bagye, W. (2019). KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto). Jurnal Informatika Dan Rekayasa Elektronik, 2(2), 43. doi: 10.36595/jire.v2i2.117

Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. doi: 10.24114/cess.v4i1.11458

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711. doi: http://dx.doi.org/10.30645/j-sakti.v5i2.369

Noviyanto, H., & Mukti, B. (2021). IMPLEMENTASI ALGORITME NAÏVE BAYES UNTUK MENENTUKAN KELAYAKAN CALON. Jurnal Informatika Dan Teknologi Komputer, 1(2), 7–12. doi: doi.org/10.55606/jitek.v1i2.378

Ramadhan, D. W., Soedijono, B., & Pramono, E. (2019). PENGUJIAN USABILITY WEBSITE TIME EXCELINDO MENGGUNAKAN SYSTEM USABILITY SCALE ( SUS ) ( STUDI KASUS?: WEBSITE TIME EXCELINDO ). 04, 139–147.

Shianto, K. A., Gunadi, K., & Setyati, E. (2019). Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R-CNN. Jurnal Infra, 7(1), 157–163. Retrieved from http://publication.petra.ac.id/index.php/teknik-informatika/article/view/8065

Sumiah, A., & Mirantika, N. (2020). Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan. 6(April). doi: doi.org/10.25134/buffer.v6i1.2907

Suyanto, D. (2019). Data Mining untuk klasifikasi dan klasterisasi data.

Downloads

PlumX Metrics

Published

30-09-2023

How to Cite

Siswanto, Dyllan Bagus, and Dwi Normawati. 2023. “Sistem Klasifikasi Monitoring Dan Evaluasi Kelayakan Penerima Beasiswa UAD Menggunakan Algoritma Naïve Bayes”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 13 (2):161-72. https://doi.org/10.33020/saintekom.v13i2.428.