Implementasi Algoritma Convolutional Neural Network untuk Pendeteksi Objek dalam Rumah pada Mata Rabun

Authors

  • Pramadika Egamo Universitas Teknologi Yogyakarta
  • Arief Hermawan Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.33020/saintekom.v13i2.456

Keywords:

Convolutional Neural Network, Yolov5, accuracy, object in the house, myopia eyes

abstract

The increased use of laptops and smartphones during the COVID-19 pandemic has led to an increase in the number of people suffering from nearsightedness. Convolutional Neural Network (CNN) is a class of deep learning that is capable of recognizing images and classifying images. Convolutional Neural Network is a technique inspired by the way mammals (humans) generate vision. CNN can be used to help nearsighted people detect or see objects in the house. With the CNN algorithm, this algorithm will be implemented to detect objects in the house to help people with myopic eyes. The number of epochs is varied in the dataset training process using Yolov5 which is included in the Convolutional Neural Network algorithm. The training dataset results show that the highest accuracy is 95%, which is obtained through mAp (mean Average Precision) calculation. The training process was carried out using a batch size of 16 and running training for 100 epochs. Different from previous research, this research implements the CNN algorithm to detect objects in the house to help people with nearsighted eyes.

Downloads

Download data is not yet available.

References

Aini, Q., Lutfiani, N., Kusumah, H., & Zahran, M. S. (2021). Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo. CESS (Journal of Computer Engineering, System and Science), 6(2), 44–51.

Faizal, E. (2012). Case Based Reasoning Diagnosis Penyakit Mata.

Hidayat, A. R., & Lusiana, V. (2022). Deteksi Jenis Sayuran dengan Tensorflow Dengan Metode Convolutional Neural Network. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 6(2), 1032–1040.

Holden, B. A., Fricke, T. R., Wilson, D. A., Jong, M., Naidoo, K. S., Sankaridurg, P., Wong, T. Y., Naduvilath, T. J., & Resnikoff, S. (2016). Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123(5), 1036–1042. https://doi.org/10.1016/j.ophtha.2016.01.006

Husna, I. N., Ulum, M., Saputro, A. K., & Laksono, D. T. (2022). Rancang Bangun Sistem Deteksi Dan Perhitungan Jumlah Orang Menggunakan Metode Convolutional Neural Network (CNN). SinarFe7, 5(1), 1–6.

Lina, Q. (2019, January 2). Apa itu Convolutional Neural Network? Medium.Com. https://medium.com/@16611110/apa-itu-convolutional-neural-network-836f70b193a4

Mulyanto, A., Susanti, E., Rossi, F., Wajiran, W., & Borman, R. I. (2021). Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR). JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 7(1), 52–57.

Pambudi, A. R. (2020). Deteksi keaslian uang kertas berdasarkan watermark dengan pengolahan citra digital. Jurnal Informatika Polinema, 6(4), 69–74.

Putri, D. D. (2021). Hubungan durasi penggunaan gadget selama pandemi COVID-19 dengan kejadian asthenopia pada mahasiswa pspd fakultas kedokteran universitas sriwijaya. Skripsi. Universitas Sriwijaya, Palembang.

Rahma, L., Syaputra, H., Mirza, A. H., & Purnamasari, S. D. (2021). Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once). Jurnal Nasional Ilmu Komputer, 2(3), 213–232.

Ramadah, F., Wibawa, P. D., & Rizal, A. (2022). Sistem Deteksi Api Menggunakan Pengolahan Citra Pada Webcam Dengan Metode Yolov3. EProceedings of Engineering, 9(2).

Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. CoRR, abs/1506.02640. http://arxiv.org/abs/1506.02640

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. ArXiv Preprint ArXiv:1804.02767.

Rosyani, P., & Saprudin, S. (2020). Deteksi Citra Bunga Menggunakan Analisis Segmentasi Fuzzy C-Means dan Otsu Threshold. MATRIK: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(1), 27–34.

Downloads

PlumX Metrics

Published

30-09-2023

How to Cite

Egamo, Pramadika, and Arief Hermawan. 2023. “Implementasi Algoritma Convolutional Neural Network Untuk Pendeteksi Objek Dalam Rumah Pada Mata Rabun”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 13 (2):173-83. https://doi.org/10.33020/saintekom.v13i2.456.