Model Klasifikasi Machine Learning untuk Prediksi Ketepatan Penempatan Karir
DOI:
https://doi.org/10.33020/saintekom.v14i1.512Keywords:
machine learning, random forest, job placement, classification, predictionAbstract
The complexity of the job market requires individuals and organizations to understand the trends and needs of the world of work. One of the main challenges is the right career placement. That is becoming increasingly popular is the use of Machine Learning algorithms in the decision-making process. ML classification models such as Random Forest, Decision Tree, Naïve Bayes, KNN, and SVM have demonstrated their potential in uncovering hidden patterns from data, including a person's educational history, work experience and interests. In this research, the application of the ML classification model is aimed at predicting career placement. From the data sample used of 215, this research evaluates the effectiveness of various ML models in the context of career placement. As a result, the Random Forest Model is superior to other proposed models with an accuracy value of 87% and an AUC/ROC value of 0.93 which indicates a very good classification value. Meanwhile, the SVM model with Linear Kernel shows the lowest performance with an accuracy value of 67%. Apart from getting information on the best accuracy and AUC/ROC values, the results of this research found that the 'ssc_presentage' attribute (high school exam percentage) is an important factor in career placement decisions.
Downloads
References
Afiasari, N., Suarna, N., & Rahaningsi, N. (2023). Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering dengan Metode K-Means. Jurnal SAINTEKOM, 13(1), 100–110. https://doi.org/10.33020/saintekom.v13i1.402
Anggraini, S., Akbar, M., Wijaya, A., Syaputra, H., & Sobri, M. (2021). Klasifikasi Gejala Penyakit Coronavirus Disease 19 (COVID-19) Menggunakan Machine Learning. Journal of Software Engineering Ampera, 2(1), 57–68. https://doi.org/10.51519/journalsea.v2i1.105
Aravind, T., Reddy, B. S., Avinash, S., & Jeyakumar, G. (2019). Information of Under Graduate Students. Proceedings of the Third International Conference on I-SMAC, 542–546.
Bao, Y., Peng, Y., & Wu, C. (2023). Deep Learning-Based Job Placement in Distributed Machine Learning Clusters With Heterogeneous Workloads. IEEE/ACM Transactions on Networking, 31(2), 634–647. https://doi.org/10.1109/TNET.2022.3202529
Danuri, D., & Jaroji, J. (2019). Elisitasi Kebutuhan Perangkat Lunak Rekrutmen Pegawai Dengan Pendekatan Soft System Methodology. Just TI (Jurnal Sains Terapan Teknologi Informasi), 10(2), 42. https://doi.org/10.46964/justti.v10i2.110
Firdaus, I. A. (2022). Deteksi Infeksi Mycoplasma Pneumoniae Pneumonia Menggunakan Komparasi Algoritma Klasifikasi Machine Learning. JOINTECS (Journal of Information Technology and Computer Science), 7(1), 35. https://doi.org/10.31328/jointecs.v7i1.3242
Gata, W., Surohman, S., & Nawawi, H. M. (2023). Twitter in analysis of policy sentiments of the omnibus law work creative design. 020011. https://doi.org/10.1063/5.0128546
Hozairi, H., Anwari, A., & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. https://doi.org/10.21107/nero.v6i2.237
Kharisma, I. L., Septiani, D. A., Fergina, A., & Kamdan, K. (2023). Penerapan Algoritma Decision Tree untuk Ulasan Aplikasi Vidio di Google Play. Jurnal Nasional Teknologi dan Sistem Informasi, 9(2), 218–226. https://doi.org/10.25077/TEKNOSI.v9i2.2023.218-226
Metalita, E., Handiyani, H., Afriani, T., & Rayatin, L. (2021). Analisis Jenjang Karir dan Minat Menjadi Perawat Intensif. Jurnal Keperawatan Silampari, 5(1), 156–167. https://doi.org/10.31539/jks.v5i1.2907
Pessach, D., Singer, G., Avrahami, D., Chalutz Ben-Gal, H., Shmueli, E., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, 113290. https://doi.org/10.1016/j.dss.2020.113290
Pusporani, E., Qomariyah, S., & Irhamah, I. (2019). Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning. Inferensi, 2(1), 25. https://doi.org/10.12962/j27213862.v2i1.6810
Ramezan, C. A., Warner, T. A., & Maxwell, A. E. (2019). Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020185
Raza, A. (2023). Job Placement Dataset [dataset]. https://www.kaggle.com/datasets/ahsan81/job-placement-dataset?resource=download
Siahaan, R. A., Nasution, M., & Hasibuan, M. N. S. (2021). Model Data Mining untuk Perancangan Aplikasi Diagnostik Inflammatory Liver Disease. Jurnal Teknik Informatika UNIKA Santo Thomas, 145–153. https://doi.org/10.54367/jtiust.v6i1.1277
Sihombing, P. R., & Yuliati, I. F. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK?: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 417–426. https://doi.org/10.30812/matrik.v20i2.1174
Sukmawati, S., Sulastri, S., Februariyanti, H., & Jananto, A. (2022). Perbandingan Algoritma C4.5 Dan Algoritma Naive Bayes Untuk Klasifikasi Pekerja Migran Indonesia. I N F O R M A T I K A, 14(1), 7. https://doi.org/10.36723/juri.v14i1.280
Umar, R., Fadlil, A., & Yuminah, Y. (2018). Sistem Pendukung Keputusan dengan Metode AHP untuk Penilaian Kompetensi Soft Skill Karyawan. Khazanah Informatika?: Jurnal Ilmu Komputer Dan Informatika, 4(1), 27–34. https://doi.org/10.23917/khif.v4i1.5978
Visa, S., Ramsay, B., & Ralescu, A. (n.d.). Confusion Matrix-based Feature Selection.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hendri Mahmud Nawawi, Agung Baitul Hikmah, Ali Mustopa, Ganda Wijaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.