Model Klasifikasi Machine Learning untuk Prediksi Ketepatan Penempatan Karir

Authors

  • Hendri Mahmud Nawawi Universitas Nusa Mandiri
  • Agung Baitul Hikmah Universitas Bina Sarana Informatika
  • Ali Mustopa Universitas Bina Sarana Informatika
  • Ganda Wijaya Universitas Nusa Mandiri

DOI:

https://doi.org/10.33020/saintekom.v14i1.512

Keywords:

machine learning, random forest, job placement, classification, prediction

Abstract

The complexity of the job market requires individuals and organizations to understand the trends and needs of the world of work. One of the main challenges is the right career placement. That is becoming increasingly popular is the use of Machine Learning  algorithms in the decision-making process. ML classification models such as Random Forest, Decision Tree, Naïve Bayes, KNN, and SVM have demonstrated their potential in uncovering hidden patterns from data, including a person's educational history, work experience and interests. In this research, the application of the ML classification model is aimed at predicting career placement. From the data sample used of 215, this research evaluates the effectiveness of various ML models in the context of career placement. As a result, the Random Forest Model is superior to other proposed models with an accuracy value of 87% and an AUC/ROC value of 0.93 which indicates a very good classification value. Meanwhile, the SVM model with Linear Kernel shows the lowest performance with an accuracy value of 67%. Apart from getting information on the best accuracy and AUC/ROC values, the results of this research found that the 'ssc_presentage' attribute (high school exam percentage) is an important factor in career placement decisions.

Downloads

Download data is not yet available.

References

Afiasari, N., Suarna, N., & Rahaningsi, N. (2023). Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering dengan Metode K-Means. Jurnal SAINTEKOM, 13(1), 100–110. https://doi.org/10.33020/saintekom.v13i1.402

Anggraini, S., Akbar, M., Wijaya, A., Syaputra, H., & Sobri, M. (2021). Klasifikasi Gejala Penyakit Coronavirus Disease 19 (COVID-19) Menggunakan Machine Learning. Journal of Software Engineering Ampera, 2(1), 57–68. https://doi.org/10.51519/journalsea.v2i1.105

Aravind, T., Reddy, B. S., Avinash, S., & Jeyakumar, G. (2019). Information of Under Graduate Students. Proceedings of the Third International Conference on I-SMAC, 542–546.

Bao, Y., Peng, Y., & Wu, C. (2023). Deep Learning-Based Job Placement in Distributed Machine Learning Clusters With Heterogeneous Workloads. IEEE/ACM Transactions on Networking, 31(2), 634–647. https://doi.org/10.1109/TNET.2022.3202529

Danuri, D., & Jaroji, J. (2019). Elisitasi Kebutuhan Perangkat Lunak Rekrutmen Pegawai Dengan Pendekatan Soft System Methodology. Just TI (Jurnal Sains Terapan Teknologi Informasi), 10(2), 42. https://doi.org/10.46964/justti.v10i2.110

Firdaus, I. A. (2022). Deteksi Infeksi Mycoplasma Pneumoniae Pneumonia Menggunakan Komparasi Algoritma Klasifikasi Machine Learning. JOINTECS (Journal of Information Technology and Computer Science), 7(1), 35. https://doi.org/10.31328/jointecs.v7i1.3242

Gata, W., Surohman, S., & Nawawi, H. M. (2023). Twitter in analysis of policy sentiments of the omnibus law work creative design. 020011. https://doi.org/10.1063/5.0128546

Hozairi, H., Anwari, A., & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. https://doi.org/10.21107/nero.v6i2.237

Kharisma, I. L., Septiani, D. A., Fergina, A., & Kamdan, K. (2023). Penerapan Algoritma Decision Tree untuk Ulasan Aplikasi Vidio di Google Play. Jurnal Nasional Teknologi dan Sistem Informasi, 9(2), 218–226. https://doi.org/10.25077/TEKNOSI.v9i2.2023.218-226

Metalita, E., Handiyani, H., Afriani, T., & Rayatin, L. (2021). Analisis Jenjang Karir dan Minat Menjadi Perawat Intensif. Jurnal Keperawatan Silampari, 5(1), 156–167. https://doi.org/10.31539/jks.v5i1.2907

Pessach, D., Singer, G., Avrahami, D., Chalutz Ben-Gal, H., Shmueli, E., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, 113290. https://doi.org/10.1016/j.dss.2020.113290

Pusporani, E., Qomariyah, S., & Irhamah, I. (2019). Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning. Inferensi, 2(1), 25. https://doi.org/10.12962/j27213862.v2i1.6810

Ramezan, C. A., Warner, T. A., & Maxwell, A. E. (2019). Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020185

Raza, A. (2023). Job Placement Dataset [dataset]. https://www.kaggle.com/datasets/ahsan81/job-placement-dataset?resource=download

Siahaan, R. A., Nasution, M., & Hasibuan, M. N. S. (2021). Model Data Mining untuk Perancangan Aplikasi Diagnostik Inflammatory Liver Disease. Jurnal Teknik Informatika UNIKA Santo Thomas, 145–153. https://doi.org/10.54367/jtiust.v6i1.1277

Sihombing, P. R., & Yuliati, I. F. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK?: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 417–426. https://doi.org/10.30812/matrik.v20i2.1174

Sukmawati, S., Sulastri, S., Februariyanti, H., & Jananto, A. (2022). Perbandingan Algoritma C4.5 Dan Algoritma Naive Bayes Untuk Klasifikasi Pekerja Migran Indonesia. I N F O R M A T I K A, 14(1), 7. https://doi.org/10.36723/juri.v14i1.280

Umar, R., Fadlil, A., & Yuminah, Y. (2018). Sistem Pendukung Keputusan dengan Metode AHP untuk Penilaian Kompetensi Soft Skill Karyawan. Khazanah Informatika?: Jurnal Ilmu Komputer Dan Informatika, 4(1), 27–34. https://doi.org/10.23917/khif.v4i1.5978

Visa, S., Ramsay, B., & Ralescu, A. (n.d.). Confusion Matrix-based Feature Selection.

Downloads

PlumX Metrics

Published

31-03-2024

How to Cite

Mahmud Nawawi, Hendri, Agung Baitul Hikmah, Ali Mustopa, and Ganda Wijaya. 2024. “Model Klasifikasi Machine Learning Untuk Prediksi Ketepatan Penempatan Karir”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 14 (1):13-25. https://doi.org/10.33020/saintekom.v14i1.512.

Issue

Section

Articles