Analisis Opini Terhadap Aplikasi Riliv di Twitter Menggunakan Algoritma Naïve Bayes dan Random Forest

Authors

  • Diana Nurfitriana Universitas Singaperbangsa Karawang
  • Taufik Ridwan Universitas Singaperbangsa Karawang
  • Apriade Voutama Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.33020/saintekom.v14i1.526

Keywords:

AI Project Cycle, naïve bayes, random forest, riliv application, sentiment analysis

Abstract

In the current era of technological advancement and the internet, people can easily access various information. This technological advancement brings innovation in the mental health field, such as services in the form of apps. This research conducts sentiment analysis using the Naïve Bayes and Random Forest algorithms. The study aims to analyze Twitter users’ opinions regarding the Riliv apps and compare the results of classification using Naïve Bayes and Random Forest. This research methodology uses the AI Project Cycle method. The data used is tweet data from Twitter with the keyword 'aplikasi riliv’. The dataset consisted of 1035 data, which was processed to produce 273 positive, 273 neutral, and 39 negative sentiments data. The Naïve Bayes and Random Forest algorithms were applied to compare the classification results of the two. The most optimal classification results are Naïve Bayes with SMOTE with the division of 90% training data and 10% testing data, which results in an accuracy value of 82.72%, a value of precision is 82.89% and a value of recall is 82.72%. Based on the results of the distribution of sentiment data, most users gave positive reviews and were knowledgeable about the Riliv application, while only a few were disappointed

Downloads

Download data is not yet available.

References

Aldean, M. Y., Paradise, P., & Setya Nugraha, N. A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac). Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 4(2), 64–72. https://doi.org/10.20895/inista.v4i2.575

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2021.107134

Fadhillah, R. P. (2022). Analisis Sentimen Terhadap Pemberitaan Varian Omicron di Indonesia pada Media Sosial Instagram Menggunakan Naïve Bayes. Universitas Singaperbangsa Karawang.

Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo. https://doi.org/10.33365/jti.v14i2.679

Halim, C., Purnomo, H. D., & Wahyono, T. (2022). Analisis Pengelompokan Wilayah Penyebaran Covid-19 Di Indonesia Dengan Metode Clustering Menggunakan Algoritma K-Means dan K-Medoids. Jurnal Inovtek Polbeng, 7(2), 359–372.

Hendra, A., & Fitriyani, F. (2021). Analisis Sentimen Review Halodoc Menggunakan Nai ?ve Bayes Classifier. JISKA (Jurnal Informatika Sunan Kalijaga). https://doi.org/10.14421/jiska.2021.6.2.78-89

Nanda, S., Mualfah, D., & Fitri, D. (2022). Analisis Sentimen Kepuasan Pengguna Terhadap Layanan Streaming Mola Menggunakan Algoritma Random Forest. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (JATIM), 3(2 SE-Articles). https://doi.org/10.31102/jatim.v3i2.1592

Qadrini, L., Hikmah, H., & Megasari, M. (2022). Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017. Journal of Computer System and Informatics (JoSYC), 3(4), 386–391. https://doi.org/10.47065/josyc.v3i4.2154

Saputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry Maulana Husain. (2019). Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 377–382. https://doi.org/10.29207/resti.v3i3.1118

Tiara, O. R. (2021). Peduli Kesehatan Mental dengan Startup Asal Indonesia Ini. My Skill. https://myskill.id/blog/dunia-kerja/kesehatan-mental-startup-indonesia/

Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review. https://doi.org/10.1007/s10462-022-10144-1

Wardani, N. R., & Erfina, A. (2021). Analisis Sentimen Masyarakat Terhadap Layanan Konsultasi Dokter Menggunakan Algoritma Naive Bayes. SISMATIK (Seminar Nasional Sistem Informasi Dan Manajemen Informatika), 11–18. https://sismatik.nusaputra.ac.id/

Wijoto, R. (2019). Aplikasi Karya Anak Surabaya Ini Kantongi Penghargaan dari Google. Beritajatim.Com. https://beritajatim.com/teknologi/aplikasi-karya-anak-surabaya-ini-kantongi-penghargaan-dari-google/

Downloads

PlumX Metrics

Published

31-03-2024

How to Cite

Nurfitriana, Diana, Taufik Ridwan, and Apriade Voutama. 2024. “Analisis Opini Terhadap Aplikasi Riliv Di Twitter Menggunakan Algoritma Naïve Bayes Dan Random Forest”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 14 (1):26-37. https://doi.org/10.33020/saintekom.v14i1.526.

Issue

Section

Articles