Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering dengan Metode K-Means

Authors

  • Nur Afiasari STMIK IKMI Cirebon
  • Nana Suarna STMIK IKMI Cirebon
  • Nining Rahaningsi STMIK IKMI Cirebon

DOI:

https://doi.org/10.33020/saintekom.v13i1.402

Keywords:

clustering, k-means, inventory data

Abstract

The large number of products sold by the Bill Lights Store resulted in a stockpile of several product items due to the large supply of products that were less attractive to customers, resulting in many unsold and under-sold products. Bill Lights struggles with inventory levels of sold and unsold products, as well as shortages and overstocks. Bill Lights stores should rank each product so that they know which products are in the most demand. The purpose of this research is to solve the problem of using inventory information by grouping inventory products based on product characteristics using data mining techniques. The technique used is the K-Means algorithm method. K-Means algorithm clustering method and RapidMiner software processing. The data mining process starts with data processing (selection, cleaning, transformation, data mining and interpretation/evaluation). So if we start with a dataset of 160 products, we get cluster 0 with 88 products classified as sold, cluster 1 with 26 products classified as unsold, and cluster 2 with 46 fewer products classified as sold. The result of using the K-Means method is grouped into three clusters. To enable Bill Lights Store to implement sales and growth strategies based on products that are selling well.

Downloads

Download data is not yet available.

References

Aulia, S. (2021). Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja). Djtechno: Jurnal Teknologi Informasi, 1(1), 1–5. https://doi.org/10.46576/djtechno.v1i1.964

Huda, B., & Priyatna, B. (2019). Penggunaan Aplikasi Content Management System (CMS) Untuk Pengembangan Bisnis Berbasis E-commerce. Systematics, 1(2), 81. https://doi.org/10.35706/sys.v1i2.2076

Ika Anikah, Agus Surip, Nela Puji Rahayu, Muhammad Harun Al- Musa, & Edi Tohidi. (2022). Pengelompokan Data Barang Dengan Menggunakan Metode K-Means Untuk Menentukan Stok Persediaan Barang. KOPERTIP?: Jurnal Ilmiah Manajemen Informatika Dan Komputer, 4(2), 58–64. https://doi.org/10.32485/kopertip.v4i2.120

Maulida, L. (2018). Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means. JISKA (Jurnal Informatika Sunan Kalijaga), 2(3), 167. https://doi.org/10.14421/jiska.2018.23-06

Muningsih, E., & Kiswati, S. (2018). Sistem Aplikasi Berbasis Optimasi Metode Elbow Untuk Penentuan Clustering Pelanggan. Joutica, 3(1), 117. https://doi.org/10.30736/jti.v3i1.196

Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI

Nasir, J. (2021). Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 11(2), 690–703. https://doi.org/10.24176/simet.v11i2.5482

Novita Lestari Anggreini. (2019). Teknik Clustering Dengan Algoritma K-Medoids Untuk Menangani Strategi Promosi Di Politeknik Tedc Bandung. Jurnal Teknologi Informasi Dan Pendidikan, 12(2). http://tip.ppj.unp.ac.id

Santosa, B. (2007). Data mining teknik pemanfaatan data untuk keperluan bisnis. Yogyakarta: Graha Ilmu, 978(979), 756.

Srisulistiowati, D. B., & , Muhamad Khaerudin, S. R. (2020). Sistem Informasi Prediksi Penjualan Alat Tulis Kantor Dengan Metode Fp-Growth (Studi Kasus Toko Koperasi Sekolah Bina Mulia). Jurnal Sistem Informasi Universitas Suryadarma, 8(2). https://doi.org/10.35968/jsi.v8i2.739

Downloads

PlumX Metrics

Published

31-03-2023

How to Cite

Afiasari, Nur, Nana Suarna, and Nining Rahaningsi. 2023. “Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering Dengan Metode K-Means”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 13 (1):100-110. https://doi.org/10.33020/saintekom.v13i1.402.

Issue

Section

Articles