Data Mining Menggunakan Multiple Regression untuk Prediksi Harga Saham Netflix

Authors

  • Rama Dona Ariyatma Universitas Mercu Buana
  • Syahrul Fahmi Universitas Mercu Buana

DOI:

https://doi.org/10.33020/saintekom.v13i2.419

Keywords:

multiple regression, data mining, stock, Netflix

abstract

Investing in the stock market is an important and fascinating endeavor, especially when we observe significant increases in certain stocks. Currently, Netflix stock is one of the rising stars and sought after by investors. However, along with the potential for high profits, there are certainly risks of losses that need to be anticipated. To mitigate these risks, an investor must make predictions about future stock prices. One method that can be used is data mining, a data processing technique used to discover patterns in data. In this study, data mining was conducted using the multiple regression algorithm to predict the future price of Netflix stock. Python and Jupyter Notebook were used as tools to process the data, which was collected from January 4, 2010, to March 30, 2023, totaling 3334 data points. After data processing, the model yielded a score of 0.99%, indicating a highly reliable model. Additionally, evaluation using RMSE resulted in a value of 3.73, and MAE had a value of 2.80, both derived from 1334 testing data points. With accurate prediction results and the evaluation conducted, an investor can use these findings as a reference when deciding whether to buy or sell Netflix stock.

Downloads

Download data is not yet available.

References

Hammad, R., Hardita, V. C., Zulfikri, M., & Sholeha, E. W. (2022). Penerapan metode apriori sebagai sistem pendukung keputusan pembentukan paket bibit buah . SAINTEKOM, 58-68.https://doi.org/10.33020/saintekom.v12i1.240

Indarwati, T., Irwanti, T., & Rimawati, E. (2018).Penggunaan Metode Linear Regression untuk Prediksi Penjualan Smartphone. Jurnal TIKomSiN, 1-6. https://doi.org/10.30646/tikomsin.v6i2.369

Irawan, F., Sumijan, & Yuhandri. (2021).Prediksi Tingkat Produksi Buah Kelapa Sawit dengan Metode Single Moving Average.Jurnal Informasi dan Teknologi, 251-256. https://doi.org/10.37034/jidt.v3i4.162

Pambudi, A., Abidin, Z., & Permata. (2023). PENERAPAN CRISP-DM MENGGUNAKAN MLR K-FOLD PADA DATA SAHAM PT.TELKOM INDONESIA. JDMSI, 1-14. https://doi.org/10.33365/jdmsi.v4i1

Patriya, E. (2020).Implementasi Support Machine pada Prediksi Harga Saham Gabungan (IHSG). Jurnal Ilmiah Teknologi dan Rekayasa,24-38.http://dx.doi.org/10.35760/tr.2020.v25i1.2571

Priyadi, I., Santony, J., & Na'am, J. (2019). Data Mining Predictive Modeling for Prediction of Gold Prices . Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 93-100. http://dx.doi.org/10.24014/ijaidm.v2i2.6864

Rahmatullah,S., Juningsih, E. H., & Rachmawati, S. (2023). Prediksi nilai akademik peserta didik di masa pandemi covid 19 dengan regresi linier berganda. JISAMAR,112-123. https://doi:10.52362/jisamar.v7i1.1012

Suryanto, A. A., Muqtadir A. (2019).Penerapan Metode Mean Absolute Error(MAE) Dalam Algoritma Regresi linear Untuk prediksi Produksi Padi.Jurnal Sains dan Teknologi,78-83. https://doi.org/10.32764/saintekbu.v11i1.298

Triyanto, E., Sismoro, H., & Laksito, A. D. (2018).Implementasi Algoritma Regresi Linear Berganda untuk Memprediksi Produksi Padi di Kabupaten Bantul.Jurnal Teknologi dan sistem Informasi Univrab, 73-86. https://doi.org/10.36341/rabit.v4i2.666

Untoro, A. B. (2020).Prediksi harga saham Dengan menggunakan Jaringan syaraf Tiruan. Jurnal Jurnal Teknologi Informatika dan Komputer,24-38.https://doi.org/10.37012/jtik.v6i2.212

Yanto, R. (2018). Implementasi Data Mining Estimasi Ketersediaan Lahan Pembuangan Sampah menggunakan Algoritma Regresi Linear. JURNAL RESTI, 2, 3.https://doi.org/10.29207/resti.v2i1.282

Downloads

PlumX Metrics

Published

30-09-2023

How to Cite

Dona Ariyatma, Rama, and Syahrul Fahmi. 2023. “Data Mining Menggunakan Multiple Regression Untuk Prediksi Harga Saham Netflix”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 13 (2):184-92. https://doi.org/10.33020/saintekom.v13i2.419.