Penerapan Algoritma K-Means untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara

Authors

  • Stendy Budi Hartono Sakur Politeknik Negeri Nusa Utara
  • Miske Silangen Politeknik Negeri Nusa Utara
  • Desmin Tuwohingide Politeknik Negeri Nusa Utara

DOI:

https://doi.org/10.33020/saintekom.v14i1.528

Keywords:

k-means cluster, distance measure, aquaculture, julia programming language

Abstract

Capture fisheries production is decreasing due to natural resources or weather conditions, so other resources are needed to support fisheries production. One alternative is to increase the production of aquaculture commodities through seawater, freshwater, or brackish water cultivation. Various potentials for developing aquaculture have been developed in various regions, including the North Sulawesi region. Grouping aquaculture commodity production according to container type is very important to maintain and increase aquaculture production. This research aims to cluster aquaculture production in the North Sulawesi area using the K-Means method using Euclidean, Manhattan, and Minkowsky distances. The results of the research obtained three clusters, namely the first cluster, the region with the highest production of pond container types, namely the Sitaro Islands, and for second cluster consisting of 13 regions that have variations in production ranging from low to high for the types of floating net containers and ponds, while third cluster is the region Bitung with moderate production for pond types. It is hoped that this research can help related agencies to create policies to increase the production potential of aquaculture.

Downloads

Download data is not yet available.

References

Ahlina, H. F., Riono, Y., & Harahap, S. R. (2019). Pengaruh penggunaan jenis wadah yang berbeda terhadap pertumbuhan dan kelangsungan hidup ikan betutu (Oxyeleotris marmorata Blkr.). Acta Aquatica: Aquatic Sciences Journal, 6(2), Article 2. https://doi.org/10.29103/aa.v6i2.1666

Albasri, H., & Pratama, I. (2021). Potensi dan Pengelolaan Budi Daya Laut Wilayah Pengelolaan Perikanan Negara Indonesia (WPPNRI) 715. 203–232. https://hal.science/hal-03259166

Berutu, S. R., Ishak, I., & Taufik, F. (2020). Penerapan Data Mining Dalam Memprediksi Produksi Ikan Air Tawar Di Kabupaten Pakpak Bharat Menggunakan Metode Regresi Linear Berganda. Jurnal Cyber Tech, 3(6), Article 6. https://doi.org/10.53513/jct.v3i6.3457

Hutagalung, S. M. (2017). Penetapan Alur Laut Kepulauan Indonesia (Alki): Manfaatnya dan Ancaman Bagi Keamanan Pelayaran Di Wilayah Perairan Indonesia. Jurnal Asia Pacific Studies, 1(1), Article 1. https://doi.org/10.33541/japs.v1i1.502

Maulana, A., Akbar, K. N., & Nurahman, N. (2021). Penerapan Clustering Menggunakan Algoritma K-Means Sebagai Analisis Produksi Komoditas Perikanan Provinsi di Indonesia. EJECTS: Journal Computer, Technology, and Informations System, 1(1), Article 1.

Mulyani, R., Sari, Y. P., & Sumantriyadi, S. (2022). Forecasting Produksi Perikanan Budidaya Di Kota Palembang Dengan Metode Autoregressive Integrated Moving Average (ARIMA). Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 19(2), Article 2. https://doi.org/10.31851/sainmatika.v19i2.9164

Paputungan, F., Pangemanan, N. P. L., Tumbol, R. A., Undap, S. L., Tumembouw, S. S., & Rantung, S. V. (2022). Kajian kualitas air untuk menunjang perikanan budidaya Danau Moaat, Provinsi Sulawesi Utara. E-Journal BUDIDAYA PERAIRAN, 10(2), Article 2. https://doi.org/10.35800/bdp.10.2.2022.37130

Rizqiyah, S., Suroso, S., & Sriyanto, S. (2015). Kesesuaian Lahan Untuk Budidaya Perikanan Tambak di Kecamatan Kaliwungu Kabupaten Kendal. Geo-Image Journal, 4(1), Article 1. https://doi.org/10.15294/geoimage.v4i1.5085

Sakur, S. B. H. (2023a). Analisis Perbandingan Pengukuran Jarak pada Algoritme K-Means Berbasis Sum of Square Error. Progresif: Jurnal Ilmiah Komputer, 19(2), Article 2. https://doi.org/10.35889/progresif.v19i2.1276

Sakur, S. B. H. (2023b). Perbandingan Distance Measures pada K-Means Cluster dan Topsis Dengan Korelasi Pearson Dan Spearman. Jurnal Informatika Dan Tekonologi Komputer (JITEK), 3(1), Article 1. https://doi.org/10.55606/jitek.v3i1.1394

Saselah, J., Langi, E. O., & Hatimanis, F. (2019). Potensi Budidaya Ikan Air Tawar di Kabupaten Kepulauan Sangihe: Jurnal Ilmiah Tindalung, 5(2), Article 2. https://doi.org/10.5281/jit.v5i2.254

Sukadi, M. F. (2002). Peningkatan Teknologi Budidaya Perikanan (The improvement of fish culture technology). Jurnal Iktiologi Indonesia, 2(2), Article 2. https://doi.org/10.32491/jii.v2i2.279

Supriatin, F. E., & Rohman, A. N. (2020). Peramalan Produksi Perikanan Budidaya di Kabupaten Malang Dengan Metode Exponential Smoothing. Jurnal Media Akuatika, 5(2), 51. https://doi.org/10.33772/jma.v5i2.11961

Wawoh, L. A., Durand, S. S., & Tambani, G. O. (2019). Analisis Finansial Usaha Budidaya Udang Vaname Di Balai Pelatihan dan Penyuluhan Perikanan (BPPP) Aertembaga Kota Bitung Provinsi Sulawesi Utara. Akulturasi: Jurnal Ilmiah Agrobisnis Perikanan, 7(1), Article 1. https://doi.org/10.35800/akulturasi.7.1.2019.24406

Yuliana, S., & Zuriat, Z. (2022). Kajian Potensi Dan Peluang Usaha Budidaya Perikanan Berbasis Pemasaran Di Kabupaten Aceh Selatan. Jurnal Perikanan Terpadu, 3(1), Article 1. https://doi.org/10.35308/jupiter.v3i1.5586

Yuniati, R. A. N., & Rachman, F. (2017). Cluster Potensi Sektor Perikanan Pada Perairan Umum di Jawa Timur Tahun 2016. Prosiding Seminar Nasional & Internasional, Article. https://jurnal.unimus.ac.id/index.php/psn12012010/article/view/3015

Downloads

PlumX Metrics

Published

31-03-2024

How to Cite

Sakur, Stendy Budi Hartono, Miske Silangen, and Desmin Tuwohingide. 2024. “Penerapan Algoritma K-Means Untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 14 (1):38-47. https://doi.org/10.33020/saintekom.v14i1.528.

Issue

Section

Articles