Klasifikasi Sentimen Terhadap Kualitas Aplikasi Bahan Ajar Digital Akademik Universitas Terbuka di Google Play
DOI:
https://doi.org/10.33020/saintekom.v14i1.591Keywords:
terbuka university, long short-term memory, google play, vader, textblobAbstract
Terbuka University is a leading institution that implements the optimization of digital transformation, especially in distance learning systems. To improve the quality of service to students and stakeholders, Terbuka University has developed the Terbuka University Digital Learning Materials application. This application offers several learning modules that can be accessed through the Google Play Store. This research aims to classify data using different labels related to reviews of the Terbuka University Digital Learning Materials application using the Long Short-Term Memory classification algorithm. Evaluation is conducted to find accuracy, f1-score, precision, and recall values. The research results show that classification with Long Short-Term Memory achieves an accuracy of 76.72% with the Vader label, and the accuracy with the TextBlob label reaches 74.21%. Confusion matrix evaluation shows precision results of 0.91 and recall of 0.78, with an f1-score of 0.84 for the Vader label. For the TextBlob label, the precision is 0.96, recall is 0.45, and the f1-score is 0.61. This research contributes positively to understanding the evaluation and classification of reviews of the Terbuka University Digital Learning application. Implementing the Long Short-Term Memory algorithm with the Vader label can be an effective choice to improve service and learning quality through the application.
Downloads
References
Aditiya, P., Enri, U., & Maulana, I. (2022). Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine. JURIKOM (Jurnal Riset Komputer), 9(4), 1020. https://doi.org/10.30865/jurikom.v9i4.4673
Anisa, D. F. N., Mukhlash, I., & Iqbal, M. (2023). Deteksi Berita Online Hoax Covid-19 Di Indonesia Menggunakan Metode Hybrid Long Short Term Memory dan Support Vector Machine. Jurnal Sains Dan Seni ITS, 11(3). https://doi.org/10.12962/j23373520.v11i3.83227
ArFan, A., & Lussiana ETP. (2019). Prediksi Harga Saham Di Indonesia Menggunakan Algoritma Long Short-Term Memory. Seminar Nasional Teknologi Informasi Dan Komunikasi STIK (SeNTIK), 3(1), 2581–2327.
Dwi, R., Santosa, W., Arif Bijaksana, M., & Romadhony, A. (n.d.). Implementasi Algoritma Long Short-Term Memory (LSTM) untuk Mendeteksi Penggunaan Kalimat Abusive Pada Teks Bahasa Indonesia. In Jurnal Tugas Akhir Fakultas Informatika (Vol. 12, Issue 2020).
Fatariska, I. O. (2023). Teknik dan Kualitas Terjemahan dalam Artikel Berjudul “Batik, The Traditional Fabric of Indonesia” Menggunakan Penejermahan Online. Jurnal El-Hamra: Kependidikan Dan Kemasyarakatan, 8(1), 2721–6047.
Husnina, D. N. N., Ratnawati, D. E., & Rahayudi, B. (2023). Analisis Sentimen Pengguna Aplikasi RedBus berdasarkan Ulasan di Google Play Store menggunakan Metode Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 7(2), 737–743. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12297%0Ahttps://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/12297/5593
Khoiruddin, Y., Fauzi, A., & Siregar, A. M. (2023). Analisis Sentimen Gojek Indonesia Pada Twitter Menggunakan Algoritme Naïve Bayes Dan Support Vector Machine. Jurnal Ilmiah Komputer, 19, 391–400.
Kulsum, U., Jajuli, M., & Sulistiyowati, N. (2022). Analisis Sentimen Aplikasi WETV di Google Play Store Menggunakan Algoritma Support Vector Machine. Journal of Applied Informatics and Computing, 6(2), 205–212. https://doi.org/10.30871/jaic.v6i2.4802
Kusuma, A., & Nurramdhani Irmanda, H. (2022). Analisis Sentimen Pada Ulasan Aplikasi Indodax di Google Play Store Menggunakan Metode Support Vector Machine.
Lestari, N. A., Akhriza, M., & Yuniar, E. (2020). Metode Naïve Bayes Classifier Dengan Textblob Untuk Analisis Sentimen Terhadap Pelayanan Indihome Dan First Media. Seminar Nasional Teknologi Informasi Dan Komunikasi STI&K (SeNTIK), 4(1), 283–288. https://t.co/Ws2wOyU5kz
Nurhafida, S. I., & Sembiring, F. (2022). Analisis Sentimen Aplikasi Novel Online Di Google Play Store Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Sains Komputer & Informatika (J-SAKTI, 6(1), 317–327.
Riany, A. F., & Testiana, G. (2023). Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes. Jurnal SAINTEKOM, 13(1), 42–54. https://doi.org/10.33020/saintekom.v13i1.352
Tampubolon, D. N. M., Hulu, V. V., Sipahutar, R. O., &
Sihombing, O. (2023). Analisis Prediksi Genre Film Pada Internet Movie Database Indonesia Menggunakan Metode Long Short Term Memory. Jurnal Tekinkom (Teknik Informasi Dan Komputer), 6(2), 290–298. https://doi.org/10.37600/tekinkom.v6i2.925
Taufiq Anwar, M., Riandhita Arief Permana, D., STMI Jakarta, P., Sistem Informasi Industri Otomotif, P., Letjen Suprapto No, J., & Pusat, J. (2023). Analisis Sentimen Masyarakat Indonesia Terhadap Produk Kendaraan Listrik Menggunakan VADER. Jurnal Teknik Informatika Dan Sistem Informasi, 10(1), 783–792. http://jurnal.mdp.ac.id
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rhini Fatmasari, Windu Gata, Nia Kusuma Wardhani, Kurnia Prayogi, Modesta Binti Husna

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.