Analisis Simulasi Routing AODV Adaptif dengan Learning Automata untuk Komunikasi V2V

Authors

  • Muhamad Denhas Effendi Program Studi Teknik Informatika, Fakultas Sains Teknologi dan Desain, Universitas Trilogi
  • Ketut Bayu Bintoro Program Studi Teknik Informatika, Fakultas Sains Teknologi dan Desain, Universitas Trilogi
  • Maura Widyaningsih STMIK Palangkaraya

DOI:

https://doi.org/10.33020/saintekom.v15i1.820

Keywords:

V2V communication, learning automata, AODV routing protocol, NS3, vehicular ad-hoc network.

Abstract

The study addresses the limitations of the Ad Hoc On-Demand Distance Vector (AODV) protocol in vehicle-to-vehicle (V2V) communication, explicitly targeting issues such as low data transfer rates, increased delay times, reduced throughput, and data congestion due to dynamic network topologies. The research introduces a novel protocol called Learning Automata Ad Hoc On-Demand (LAAODV) to enhance these areas. Utilizing NS3 and SUMO for dynamic traffic simulations, LAAODV demonstrated superior performance compared to AODV. Key findings include a higher packet delivery success rate with a Packet Loss Ratio (PLR) of 95%, lower than AODV's 96%, and a Packet Delivery Ratio (PDR) of 4.5% compared to AODV's 3.25%, indicating its effectiveness in reducing packet loss. The study also highlights significant improvements in PDR and Average Throughput, showcasing LAAODV's enhanced performance in dynamic traffic conditions. LAAODV provides an effective solution to the shortcomings of existing routing protocols, significantly enhancing V2V network performance. This research underscores the importance of developing robust and adaptive routing solutions to meet the evolving demands of dynamic vehicular environments, contributing to more efficient and reliable V2V communication protocols.

Downloads

Download data is not yet available.

References

Abdullhaj Saif, A. A., & Kumar, K. (2022). Enhance the performance of AODV routing protocol in mobile ad-hoc networks. Journal of Physics: Conference Series, 2327(1).https://doi.org/10.1088/1742-6596/2327/1/012057

https://doi.org/10.1155/2021/9977252

Ameen, H. A., Mahamad, A. K., Saon, S., Nor, D. M., & Ghazi, K. (2019). A review on vehicle to vehicle communication system applications. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 188–198. https://doi.org/10.11591/ijeecs.v18.i1.pp188-198

Ashok, K., Krishna, S. B. V., Patil, A., Chandrashekharaiah, M., Nayankumar, K. C., Narayanapur, P. S., & Subhashini, S. (2022). Review on Energy Efficient V2V Communication Techniques for a Dynamic and Congested Traffic Environment. 2022 International Conference on Computer Communication and Informatics, ICCCI 2022, 0–5. https://doi.org/10.1109/ICCCI54379.2022.9740853

Belamri, F., Boulfekhar, S., & Aissani, D. (2021). A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET). Telecommunication Systems, 78(1), 117–153. https://doi.org/10.1007/s11235-021-00797-8

Beletsioti, G. A., & Member, G. S. (2020). A Learning-Automata-Based Congestion-Aware Scheme for Energy-Efficient Elastic Optical Networks. IEEE Access, 8.

Bintoro, K. B. Y., & Priyambodo, T. K. (2024). Learning Automata-Based AODV to Improve V2V Communication in A Dynamic Traffic Simulation. International Journal of Intelligent Engineering and Systems, 17(1), 666–678. https://doi.org/10.22266/ijies2024.0229.56

Bintoro, K., Priyambodo, T., & Mustofa, M. (2024). Optimizing AODV Routing Protocol to Improve Quality of Service Performance for V2V Communication. 2024 International Conference on Smart Computing, IoT and Machine Learning (SIML), 1(1), 180–185. https://doi.org/10.1109/SIML61815.2024.10578106

Darabkh, K. A., Judeh, M. S. A., Bany Salameh, H., & Althunibat, S. (2018). Mobility aware and dual phase AODV protocol with adaptive hello messages over vehicular ad hoc networks. AEU - International Journal of Electronics and Communications, 94(July), 277–292. https://doi.org/10.1016/j.aeue.2018.07.020

Gawas, M. A., & Govekar, S. S. (2019). A novel selective cross layer based routing scheme using ACO method for vehicular networks. Journal of Network and Computer Applications, 143(May), 34–46. https://doi.org/10.1016/j.jnca.2019.05.010

Haider, S., Abbas, G., Abbas, Z. H., & Baker, T. (2019). DABFS: A robust routing protocol for warning messages dissemination in VANETs.ComputerCommunications, 147(May),n 21–34. https://doi.org/10.1016/j.comcom.2019.08.011

Hasanzadeh-Mofrad, M., & Rezvanian, A. (2018). Learning Automata Clustering. Journal of Computational Science, 24, 379–388.https://doi.org/10.1016/j.jocs.2017.09.008

Homaei, M. H., Band, S. S., Pescape, A., & Mosavi, A. (2021). DDSLA-RPL: Dynamic Decision System Based on Learning Automata in the RPL Protocol for Achieving QoS. IEEE Access, 9, 63131–63148. https://doi.org/10.1109/ACCESS.2021.3075378

Hota, L., Nayak, B. P., Kumar, A., Sahoo, B., & Ali, G. G. M. N. (2022). A Performance Analysis of VANETs Propagation Models and Routing Protocols. Sustainability (Switzerland), 14(3), 1–20. https://doi.org/10.3390/su14031379

Khadim, S., Riaz, F., Jabbar, S., Khalid, S., & Aloqaily, M. (2020). A non-cooperative rear-end collision avoidance scheme for non-connected and heterogeneous environment. Computer Communications, 150(April 2019), 828–840.https://doi.org/10.1016/j.comcom.2019.11.002

Maaroof, B. B., Rashid, T. A., Abdulla, J. M., Hassan, B. A., Alsadoon, A., Mohammadi, M., Khishe, M., & Mirjalili, S. (2022). Current Studies and Applications of Shuffled Frog Leaping Algorithm: A Review. Archives of Computational Methods in Engineering, 29(5), 3459–3474. https://doi.org/10.1007/s11831-021-09707-2

Mezher, A. E., AbdulRazzaq, A. A., & Hassoun, R. K. (2023). A comparison of the performance of the ad hoc on-demand distance vector protocol in the urban and highway environment. Indonesian Journal of Electrical Engineering and Computer Science, 30(3), 1509–1515. https://doi.org/10.11591/ijeecs.v30.i3.pp1509-1515

Mustikawati, E., Perdana, D., & Negara, R. M. (2017). Network Security Analysis in Vanet Against Black Hole and Jellyfish Attack with. CommIT (Communication & Information Technology) Journal, 11(2), 77–83.

Naskath, J., Paramasivan, B., Mustafa, Z., & Aldabbas, H. (2022). Connectivity analysis of V2V communication with discretionary lane changing approach. Journal of Supercomputing, 78(4), 5526–5546. https://doi.org/10.1007/s11227-021-04086-8

Priyambodo, T. K., Wijayanto, D., & Gitakarma, M. S. (2021). Performance optimization of MANET networks through routing protocol analysis. Computers, 10(1), 1–13. https://doi.org/10.3390/computers10010002

Saritha, V., Krishna, P. V., Misra, S., & Obaidat, M. S. (2017). Learning automata based optimized multipath routingusing leapfrog algorithm for VANETs. IEEE International Conference on Communications, 1–5.https://doi.org/10.1109/ICC.2017.7997401

Zhang, D., Gong, C., Zhang, T., Zhang, J., & Piao, M. (2021). A new algorithm of clustering AODV based on edge computing strategy in IOV. Wireless Networks, 27(4), 2891–2908. https://doi.org/10.1007/s11276-021-02624-z

Downloads

PlumX Metrics

Published

31-03-2025

How to Cite

Effendi, Muhamad Denhas, Ketut Bayu Bintoro, and Maura Widyaningsih. 2025. “Analisis Simulasi Routing AODV Adaptif Dengan Learning Automata Untuk Komunikasi V2V”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 15 (1):69-81. https://doi.org/10.33020/saintekom.v15i1.820.

Issue

Section

Articles