Analisis Trend Topik Penelitian pada Web Of Science dan SINTA untuk Penentuan Tema Tugas Akhir Mahasiswa AMIK Indonesia Banda Aceh
DOI:
https://doi.org/10.33020/saintekom.v10i1.91Keywords:
analysis, trend, topik penelitian, web of science, sintaAbstract
Penelitian ini mencoba melakukan penambangan dengan menggunakan teknologi web untuk mengumpulkan data informasi yang berasal dari Web of Science dan SINTA yang dikumpulkan. Metodologi Cross Industry Standard Process for Data Mining (CRISP–DM) digunakan sebagai standard proses data mining sekaligus sebagai metode penelitian. Peneliti mengumpulkan data melalui daftar jurnal Web of Science dan SINTA. Untuk melacak trend topik penelitian, peneliti memilih rentang waktu dari tahun 2018 sampai dengan 2019 dan mengekspor data dari Web of Science Core Collection pada April 2019. Ada 38.162 publikasi yang berhasil diambil di Web-Science-defined kategori Ilmu Komputer dan Sistem Informasi dan 230 diambil dari website SINTA. Tetapi, penulis hanya mengambil 20 Jurnal dengan H-Index Tertinggi di Web of Science Core Collection. Sedangkan pada SINTA, penulis juga mengambil 20 Jurnal dengan rangking SINTA 1 dan 2. penelitian ini menyimpulkan topik penelitian dalam jurnal Web of Science dan dikaitkan dengan dengan tren topik penelitian dan yang muncul terbanyak adalah learning, network, analysis, system, control, data, image, optimization, systems, dan neural. Adapun untuk klasifikasi menggunakan model Naive Bayes, Generalized Linear Model, Logistic Regression, Fast Large Margin, Deep Learning, Decision Tree, Random Forest, Gradient Boosted Trees, dan Support Vector Machine. Berdasarkan hasil akurasi, model Generalized Linear Model dan Decision Tree memiliki akurasi sebesar 94.3%, sedangkan Gradient Boosted Trees memiliki persentase akurasi sebesar 93.8%. Naive Bayes menunjukkan tingkat akurasi sebesar 91.4%, diikuti dengan model Fast Large Margin, Deep Learning, Random Forest, dan Support Vector Machine memiliki akurasi sebesar 91.4%. Nilai dengan akurasi terendah menggunakan model Logistic Regression sebesar 65.2%. Hal ini menunjukan bahwa tingkat akurasi tertinggi yaitu dengan menggunakan model Generalized Linear Model dan Decision Tree sehingga hasilnya dapat memprediksi cukup akurat.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.


