Implementasi Deteksi Objek Real-Time Sebagai Media Edukasi dengan Algoritma YOLOv8 pada Objek Sampah

Authors

  • Adam Ramdan Universitas Muhammadiyah Sukabumi
  • Asriyanik Asriyanik Universitas Muhammadiyah Sukabumi

DOI:

https://doi.org/10.33020/saintekom.v14i2.638

Keywords:

Object Detection, YOLO, Waste, Learning Media, Website

Abstract

Waste is one of the complex global issues and is one of the points of the SDGs indicators related to municipal waste, food waste, hazardous waste and recycling systems that cannot be resolved. According to data from SIPSN in 2022, waste generation in Indonesia will reach 35,289,535.55 tons/year while about 47.32% of waste handling is done, which is 16,697,790.76 tons/year. The National Research and Innovation Agency said that currently there are still few Indonesians who have the awareness to start sorting waste from their own homes. As many as 80% of Indonesians do not sort their waste. To overcome these problems, everyone needs to make changes early on by making waste management a habit so as to change people's skeptical attitude towards waste management. Thus, research was conducted to identify the type of waste using the YOLOv8 algorithm, with a dataset of 17,617 data which was then analyzed by creating a yolov8 model. The best accuracy results were obtained by using the yolov8l variant as well as 16 batch sizes and the SGD optimizer with a learning rate value of 0.001 as a parameter. The model training process was then evaluated using confusion matrix with a percentage reaching 86.5%.

Downloads

Download data is not yet available.

References

Alden, S., & Sari, B. N. (2023). Implementasi Algoritma CNN Untuk Pemilahan Jenis Sampah Berbasis Android Dengan Metode CRISP-DM. Jurnal Informatika, 10(1), 62–71. https://doi.org/10.31294/inf.v10i1.14985

Demir, F. (2022). Deep autoencoder-based automated brain tumor detection from MRI data. Dalam Artificial Intelligence-Based Brain-Computer Interface (hlm. 317–351). Elsevier. https://doi.org/10.1016/B978-0-323-91197-9.00013-8

Efendi, D., Jasril, J., Sanjaya, S., Syafria, F., & Budianita, E. (2022). Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi. JURIKOM (Jurnal Riset Komputer), 9(3), 607. https://doi.org/10.30865/jurikom.v9i3.4176

Ferdous, M., & Ahsan, S. M. M. (2022a). A Computer Vision-based System for Surgical Waste Detection. International Journal of Advanced Computer Science and Applications, 13(3), 554–565. https://doi.org/10.14569/IJACSA.2022.0130366

Ferdous, Md., & Ahsan, Sk. Md. M. (2022b). A Computer Vision-based System for Surgical Waste Detection. International Journal of Advanced Computer Science and Applications, 13(3). https://doi.org/10.14569/IJACSA.2022.0130366

Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200

Rambe, R. S., & Aprilyani, A. (2023). Urgensi Literasi Sampah di Indonesia. https://kumparan.com/rinaldi-arrasyid-channel/urgensi-literasi-sampah-di-indonesia-209oSDszrG7/full.

Saltz, J., & Hotz, N. (2021). Data Science Process Alliance. www.DataScience-PM.com

Terven, J., & Cordova-Esparza, D. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. https://doi.org/10.3390/make5040083

United Nations Environment Programme. (2021). Global Chemicals and Waste Indicator Review Document.

Utomo, O. S. N., Utaminingrum, F., & Widasari, E. R. (2022). Implementasi YOLO versi 3 untuk Mengidentifikasi dan Mengklasifikasi Sampah Kantor berbasis NVIDIA Jetson Nano. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(6), 2829–2834.

Valentina, R., Rostianingsih, S., & Tjondrowiguno, A. N. (2020). Pengenalan Gambar Botol Plastik dan Kaleng Minuman Menggunakan Metode Convolutional Neural Network.

Wang, G., Chen, Y., An, P., Hong, H., Hu, J., & Huang, T. (2023). UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios. Sensors, 23(16), 7190. https://doi.org/10.3390/s23167190

Wu, F., & Lin, H. (2022). Effect of transfer learning on the performance of VGGNet-16 and ResNet-50 for the classification of organic and residual waste. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1043843

Yadav, V. K., Yadav, K. K., Tirth, V., Gnanamoorthy, G., Gupta, N., Algahtani, A., Islam, S., Choudhary, N., Modi, S., & Jeon, B.-H. (2021). Extraction of Value-Added Minerals from Various Agricultural, Industrial and Domestic Wastes. Materials, 14(21), 6333. https://doi.org/10.3390/ma14216333

Downloads

PlumX Metrics

Published

30-09-2024

How to Cite

Ramdan, Adam, and Asriyanik Asriyanik. 2024. “Implementasi Deteksi Objek Real-Time Sebagai Media Edukasi Dengan Algoritma YOLOv8 Pada Objek Sampah”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 14 (2):142-53. https://doi.org/10.33020/saintekom.v14i2.638.