Klasifikasi Kualitas dan Kematangan Pisang Cavendish Menggunakan Convolutional Neural Network

Authors

  • Arya Widya Hastungkoro Telkom University
  • Aditya Dwi Putro Wicaksono Telkom University
  • Yesy Diah Rosita Telkom University

DOI:

https://doi.org/10.33020/saintekom.v14i2.686

Keywords:

deep learning, classification, cavendish banana, CNN

Abstract

This research aims to develop a classification model using Convolutional Neural Networks (CNN) to determine the ripeness and quality of Cavendish bananas. The model classifies bananas into four categories: good quality unripe (MHBS), poor quality unripe (MHBK), good quality ripe (MGBS), and poor quality ripe (MGBK), using a total of 1,000 images. In this study, the classification process of the ripeness and quality of Cavendish bananas was carried out based on automatic feature extraction using CNN,after which an evaluation was carried out using a confusion matrix to assess model performance. The research developed 36 models with variations in parameters such as the number of epochs, batch size, and dataset split. The analysis results indicate that the number of epochs significantly affects the model's accuracy, with an increase in the number of epochs leading to higher accuracy. However, the dataset split scenario and batch size do not have a significant impact on the model's overall accuracy. Evaluation shows that the highest accuracy of 95% was achieved by the model with a 90:10 dataset split, a batch size of 16, and 20 epochs.

Downloads

Download data is not yet available.

References

Alzubaidi, L., Zhang, J., J. Humaidi, A., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., A. Fadhel, M., Al-Amidie, M., & Farhan, L. (2021, December). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). 10.1186/s40537-021-00444-8

Annur, C. M. (2023, June 22). Jawa Timur Jadi Produsen Pisang Terbesar Nasional 2022, Berapa Jumlahnya? Databoks. Retrieved May 13, 2024, from https://databoks.katadata.co.id/datapublish/2023/06/22/jawa-timur-jadi-produsen-pisang-terbesar-nasional-2022-berapa-jumlahnya

Barburiceanu, S., Meza, S., Orza, B., Malutan, R., & Terebes, R. (2021, November). Convolutional Neural Networks for Texture Feature Extraction. Applications to Leaf Disease Classification in Precision Agriculture. IEEE Access, 9, 160085-160103. 10.1109/ACCESS.2021.3131002

Fuadi, A., & Suharso, A. (2022). Perbandingan Arsitektur Mobilenet Dan Nasnetmobile Untuk Klasifikasi Penyakit Pada Citra Daun Kentang. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 7(3). https://doi.org/10.29100/jipi.v7i3.3026

Gampur, G., Ordiyasa, I. W., & Mulyani, S. H. (2022, Agustus). Klasifikasi Jenis Pisang Menggunakan Convolutional Neural Network. Prosiding Seminar Nasional Teknik Elektro, Informatika & Sistem Informasi (SINTaKS), 1(1). https://doi.org/10.35842/sintaks.v1i1.5

Iswantoro, D., & Handayani, D. (2022, July). Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900-905. 10.33087/jiubj.v22i2.2065

Mehenag, K., Julker, N., Forhad, A. M., Pritom, S., & Nakib, T. (2020, July). Fruits Classification using Convolutional Neural Network. GRD Journals- Global Research and Development Journal for Engineering, 5(8). ISSN- 2455-5703.

Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Christoph Molnar.

Muktianto, A., & Indriyani, V. (2022). Segmentasi Tingkat Kematangan Buah Pisang Cavendish Sangat Matang Berdasarkan Warna Menggunakan Watershed. JURIKOM (Jurnal Riset Komputer), 9(1). http://dx.doi.org/10.30865/jurikom.v9i1.3828

Putro Wicaksono, A. D. (2023, November). Klasifikasi Tingkat Kematangan, Kualitas dan Jenis Buah Pisang Berdasarkan Ciri Warna dan Bentuk Menggunakan Artificial Neural Networks. Jurnal Teknologi Informasi Indonesia (JTII), 7(2), 91-98. https://doi.org/10.30869/jtii.v7iNo 2.955

Pusporani, E., Qomariyah, S., & Irhamah, I. (2019, March). Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning. Inferensi, 2(1), 25-32. https://doi.org/10.12962/j27213862.v2i1.6810

Downloads

PlumX Metrics

Published

30-09-2024

How to Cite

Hastungkoro, Arya Widya, Aditya Dwi Putro Wicaksono, and Yesy Diah Rosita. 2024. “Klasifikasi Kualitas Dan Kematangan Pisang Cavendish Menggunakan Convolutional Neural Network”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 14 (2):185-94. https://doi.org/10.33020/saintekom.v14i2.686.