Penggunaan Decision Tree dalam Penentuan Faktor yang Mempengaruhi Status Gizi Buruk Balita di Kelurahan Tamamaung
DOI:
https://doi.org/10.33020/saintekom.v14i2.737Keywords:
malnutrition, toddlers, classification, decision tree, health centerAbstract
This study aims to evaluate the use of Decision Tree algorithms in determining the nutritional status of children based on Posyandu activity reports. Malnutrition poses serious risks for developing children, including weakened immune systems, long-term developmental delays, and high mortality rates. By applying the Decision Tree algorithm to classify the nutritional status of toddlers, this research seeks to identify nutritional status, which can then be addressed by health centers (Puskesmas). Using attributes such as weight (W), age (A), and height (H), aligned with child anthropometric indices, the Decision Tree method will be utilized to determine the factors influencing nutritional status in toddlers. The application of this method will facilitate the identification of at-risk toddlers, enabling timely prevention and intervention. Testing through k-fold cross-validation yielded an accuracy of 79.43%, a recall of 53.1%, and a precision of 76.6%. The results indicate that, out of 350 data points, the most significant factor affecting children's nutritional status is weight.
Downloads
References
Afrika, E., Amalia, R., Utama Saputra, A., & Minarti. (2022). Penyuluhan Peningkatan Pengetahuan (Eka Afrika, dkk. Jurnal Pengabdian Cendekia, 1(2), 2986–7002. https://doi.org/10.5281/zenodo.8279246
Ananta Dwi Prayoga Alwy, M Syahid Nur Wahid, Bukhari Naufal Nur Ag, & M Miftach Fakhri. (2023). Klasifikasi Penyakit Pada Padi Dengan Ekstraksi Fitur LBP dan GLCM. Journal of Deep Learning, Computer Vision and Digital Image Processing, 1–10. https://doi.org/10.61255/decoding.v1i1.51
Asriwati Amirah, Teguh Suharto, Yulita, Y., Hanna Yusrima Dalimunthe, & Sri Maryani Tanjung. (2023). Gemar Makan Olahan Ikan Lele Sebagai Upaya Peningkatan Gizi Anak Stunting di Kabupaten Labuhan Batu. J-ABDI: Jurnal Pengabdian Kepada Masyarakat, 3(2), 471–476. https://doi.org/10.53625/jabdi.v3i2.6219
Bulkisah, S. B., Astuti, R., & Bahtiar, A. (2024). Implementasi Data Mining Algoritma Decision Tree Untuk Klasifikasi Status Gizi Balita Di Kecamatan Ciledug. Jurnal Ilmiah Informatika Komputer, 29(1), 1–12. https://doi.org/10.35760/ik.2024.v29i1.10346
Dona, D., & Rifqi, M. (2022). Penerapan Metode K-Means Clustering untuk Menentukan Status Gizi Baik dan Gizi Buruk Pada Balita (Studi Kasus Kabupaten Rokan Hulu). Rabit?: Jurnal Teknologi Dan Sistem Informasi Univrab, 7(2), 179–191. https://doi.org/10.36341/rabit.v7i2.2171
Kartika, R. C., Selviyanti, E., Umbaran, D. P. A., Fitriyah, D., & Yuanta, Y. (2021). Peningkatan Pengetahuan Ibu Tentang Gizi Seimbang Untuk Mencegah Permasalahan Gizi Pada Balita di Kabupaten Jember. Journal of Community Development, 2(2), 91–96. https://doi.org/10.47134/comdev.v2i2.52
Lestari, R. I., Rahayu, D., Budiati, E., Irianto, S. E., & Karyus, A. (2023). Analisis Faktor-Faktor Yang Berhubungan Dengan Kejadian Berat Badan Lahir Rendah Di Kabupaten Mesuji Tahun 2022. An Idea Health Journal, 3(02), 41–48. https://doi.org/10.53690/ihj.v3i02.157
Lestari, W., & Sumarlinda, S. (2023). Studi Komparatif Model Klasifikasi Kerentanan Penyakit Jantung Menggunakan Algoritma Machine Learning. SATIN - Sains Dan Teknologi Informasi, 9(1), 107–115. https://doi.org/10.33372/stn.v9i1.918
Meko, A. S., Nugraheni, S. A., & Kartini, A. (2022). Evaluasi Implementasi Upaya Penanggulangan Gizi Buruk pada Masa Pandemi Covid-19 di Puskesmas: Literature Review. Media Publikasi Promosi Kesehatan Indonesia, 5(6), 640–646. https://doi.org/10.31934/mppki.v2i3
Nazanah, J. T. M. A., & Jambak, M. I. (2023). Pemanfaatan Algoritma Decision Tree ID3 Bagi Manajemen Bimbel Untuk Menentukan Faktor Kelulusan Pada Sekolah Kedinasan. KLIK?: Kajian Ilmiah Informatika Dan Komputer, 3(6), 915–924. https://doi.org/10.30865/klik.v3i6.791
Nurul Husna, L., & Izzah, N. (2021). Gambaran Status Gizi Pada Balita: Literature Review. Seminar Nasional Kesehatan, 385–392. https://doi.org/https://doi.org/10.48144/prosiding.v1i.689
Putri Andayani, R., & Afnuhazi, R. (2022). Faktor-Faktor Yang Berhubungan Dengan Status Gizi Pada Balita. Jurnal Kesehatan Mercusuar, 5, 41–48. https://doi.org/https://doi.org/10.36984/jkm.v5i2.309
Ula, M., Ulva, A. F., Mauliza, Ali, M. A., & Said, Y. R. (2022). Penerapan Machine Learning dalam Penentuan Klasifikasi Gizi Anak dengan Decision Tree. Jurnal Teknik Informatika (JUTIF), 3(5), 1457–1465. https://doi.org/https://doi.org/10.20884/1.jutif.2022.3.5.599
Vinci, A. S., Bachtiar, A., & Parahita, I. G. (2022). Kajian Ilmiah Problema Kesehatan Efektivitas Edukasi Mengenai Pencegahan Stunting Kepada Kader: Systematic Literature Review. Journal Endurance, 7(1), 66–73. https://doi.org/https://doi.org/10.31004/cdj.v4i6.22857
Yusuf, N. N., & Ilmiyani, S. N. (2023). Intervensi Gizi Spesifik Dalam Upaya Pencegahan Stunting dan Gizi Buruk Pada Balita di Dusun Sira Lauk. Communnity Development Journal, 4(2), 1147–1150. https://doi.org/https://doi.org/10.31004/cdj.v4i2.12875
Zami, A. Z., Nurdiawan, O., & Dwilestari, G. (2022). Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree. Jurnal Sistem Komputer Dan Informatika (JSON), 3(3), 305–310. https://doi.org/10.30865/json.v3i3.3892
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tithania Indah Permata Hati, Rahman Rahman, Adhy Rizaldy
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.