Implementasi Support Vector Machine dalam Analisis Sentimen Ulasan Aplikasi IndiHome TV di Google Play Store
DOI:
https://doi.org/10.33020/saintekom.v15i2.954Keywords:
sentiment analysis, text mining, Support Vector Machine, indihome tvAbstract
Sentiment analysis is used to determine the responses or opinions of a group or individual regarding a topic of discussion in the context of the entire document. The Indihome TV application is currently widely used by the public, so that reviews of the Indihome TV application on the Google Play Store are very numerous. The exact number of reviews given by users is not yet known based on their sentiment class. Therefore, a method is needed to facilitate the analysis of these user reviews. The purpose of this study is to determine the polarity of sentiment towards the Indihome TV application and to determine the performance and accuracy resulting from the application of the Support Vector Machine algorithm. The method used to convert unstructured reviews into structured reviews uses the Text Mining method. The results of this study indicate that using the SVM algorithm in sentiment analysis of the Indihome TV application data produces the highest accuracy value at a ratio of 90:10 at 94%. Furthermore, from the results of data visualization, the most frequently appearing words are applications, watch, channel, open, please, good, login, indihome, complete and so on.
Downloads
References
Al-amrani, Y., Lazaar, M., & Eddine, K. (2018). Sentiment Analysis Using Hybrid Method of. Journal of Theoretical and Applied Information Technology, 96(7), 1886–1895. www.jatit.org
Albab, M. U., Karuniawati P, Y., & Fawaiq, M. N. (2023). Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic. Jurnal TRANSFORMATIKA, 20(2), 1–10. https://journals.usm.ac.id/index.php/transformatika/?page1
Alwasi’a, A. (2020). ANALISIS SENTIMEN PADA REVIEW APLIKASI BERITA ONLINE MENGGUNAKAN METODE MAXIMUM ENTROPY (Studi Kasus: Review Detikcom pada Google Play 2019. In Skripsi.
Arikunto, S. (2014). Prosedur Penelitian Suatu Pendekatan Praktik. Rineka.
Bambang Seran, Y., & Supatman, S. (2024). Analisis Sentimen Masyarakat Terhadap Kinerja Kerja Presiden Joko Widodo Enggunakan Algoritma Support Vector Machine. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 7190–7195. https://doi.org/10.36040/jati.v8i4.10171
Budianto, A., Ariyuana, R., & Maryono, D. (2019). Perbandingan K-Nearest Neighbor (Knn) Dan Support Vector Machine (Svm) Dalam Pengenalan Karakter Plat Kendaraan Bermotor. Jurnal Ilmiah Pendidikan Teknik Dan Kejuruan, 11(1), 27. https://doi.org/10.20961/jiptek.v11i1.18018
Faradian, H., Rubhasy, A., & Wijaya, Y. F. (2024). Analisis Sentimen Terhadap Penutupan Tiktok Shop Menggunakan Algoritma Naive Bayes Classifier Pada Media Sosial X. Jurnal Ilmiah Sains Dan Teknologi.
Ferdiana, R., Jatmiko, F., Purwanti, D. D., Ayu, A. S. T., & Dicka, W. F. (2019). Dataset Indonesia untuk Analisis Sentimen. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 8(4), 334. https://doi.org/10.22146/jnteti.v8i4.533
Fitri, D. A., & Putri, A. (2022). Analisis Sentimen Pengguna Aplikasi Google Meet Menggunakan Algoritma Support Vector Machine. Jurnal Computer Science and Information Technology (CoSciTech), 3(3), 472–478.
Fridayanti, R. (2023). Analisis Sentimen Review Pengguna APlikasi Photomath dengan Metode Support Vector Machine (SVM).
Handayanto, R. T., & Herlawati. (2020). Data Mining dan Machine Learning Menggunakan Matlab dan Python. Informatika.
Herdhianto, A. (2020). Sentiment Analysis Menggunakan Naïve Bayes Classifier (NBC) pada Tweet Tentang Zakat.
Herlinawati, N., Yuliani, Y., Faizah, S., Gata, W., & Samudi, S. (2020). Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine. CESS (Journal of Computer Engineering, System and Science), 5(2), 293. https://doi.org/10.24114/cess.v5i2.18186
Ipmawati, J., Saifulloh, S., & Kusnawi, K. (2024). Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 247–256. https://doi.org/10.57152/malcom.v4i1.1066
Mahardika, Y. S., & Zuliarso, E. (2018). Analisis Sentimen Terhadap Pemerintahan Joko Widodo Pada Media Sosial Twitter Menggunakan Algoritma Naives Bayes. Prosiding SINTAK 2018, 2015, 409–413.
Ngafifi, M. (2014). Kemajuan Teknologi Dan Pola Hidup Manusia Dalam Perspektif Sosial Budaya. Jurnal Pembangunan Pendidikan: Fondasi Dan Aplikasi, 2(1), 33–47. https://doi.org/10.21831/jppfa.v2i1.2616
Santoso, I., & Madiistriyatno, H. (2021). Metodologi Penelitian Kuantitatif. Indigo Media. https://books.google.co.id/books?id=bRFTEAAAQBAJ&printsec=frontcover&hl=id&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Sitanayah Que, V. K., Iriani, A., & Dwi Purnomo, H. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization (Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi , 9(2), 162–170. www.tripadvisor.com
Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta.
Telkom. (2021). Digitalization for a Better Future. Digitalization for a Better Future, 1–486. https://www.telkom.co.id
Ubaidillah, M. J., Munadhif, I., & Rinanto, N. (2019). Klasifikasi Gelombang Otot Lengan Pada Robot Manipulator Menggunakan Support Vector Machine. Rekayasa, 12(2), 91–97. https://doi.org/10.21107/rekayasa.v12i2.5406
Utomo, D. P. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. 4(April), 437–444. https://doi.org/10.30865/mib.v4i2.2080
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agus Fajar Riany, Fenny Purwani, Irfan Dwi Jaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.
Most read articles by the same author(s)
- Agus Fajar Riany, Gusmelia Testiana, Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes , Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen: Vol. 13 No. 1 (2023): March 2023