Implementasi Support Vector Machine dalam Analisis Sentimen Ulasan Aplikasi IndiHome TV di Google Play Store

Authors

  • Agus Fajar Riany Sistem Informasi, UIN Raden Fatah Palembang
  • Fenny Purwani Sistem Informasi, UIN Raden Fatah Palembang
  • Irfan Dwi Jaya Sistem Informasi, UIN Raden Fatah Palembang

DOI:

https://doi.org/10.33020/saintekom.v15i2.954

Keywords:

sentiment analysis, text mining, Support Vector Machine, indihome tv

Abstract

Sentiment analysis is used to determine the responses or opinions of a group or individual regarding a topic of discussion in the context of the entire document. The Indihome TV application is currently widely used by the public, so that reviews of the Indihome TV application on the Google Play Store are very numerous. The exact number of reviews given by users is not yet known based on their sentiment class. Therefore, a method is needed to facilitate the analysis of these user reviews. The purpose of this study is to determine the polarity of sentiment towards the Indihome TV application and to determine the performance and accuracy resulting from the application of the Support Vector Machine algorithm. The method used to convert unstructured reviews into structured reviews uses the Text Mining method. The results of this study indicate that using the SVM algorithm in sentiment analysis of the Indihome TV application data produces the highest accuracy value at a ratio of 90:10 at 94%. Furthermore, from the results of data visualization, the most frequently appearing words are applications, watch, channel, open, please, good, login, indihome, complete and so on.

Downloads

Download data is not yet available.

References

Al-amrani, Y., Lazaar, M., & Eddine, K. (2018). Sentiment Analysis Using Hybrid Method of. Journal of Theoretical and Applied Information Technology, 96(7), 1886–1895. www.jatit.org

Albab, M. U., Karuniawati P, Y., & Fawaiq, M. N. (2023). Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic. Jurnal TRANSFORMATIKA, 20(2), 1–10. https://journals.usm.ac.id/index.php/transformatika/?page1

Alwasi’a, A. (2020). ANALISIS SENTIMEN PADA REVIEW APLIKASI BERITA ONLINE MENGGUNAKAN METODE MAXIMUM ENTROPY (Studi Kasus: Review Detikcom pada Google Play 2019. In Skripsi.

Arikunto, S. (2014). Prosedur Penelitian Suatu Pendekatan Praktik. Rineka.

Bambang Seran, Y., & Supatman, S. (2024). Analisis Sentimen Masyarakat Terhadap Kinerja Kerja Presiden Joko Widodo Enggunakan Algoritma Support Vector Machine. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 7190–7195. https://doi.org/10.36040/jati.v8i4.10171

Budianto, A., Ariyuana, R., & Maryono, D. (2019). Perbandingan K-Nearest Neighbor (Knn) Dan Support Vector Machine (Svm) Dalam Pengenalan Karakter Plat Kendaraan Bermotor. Jurnal Ilmiah Pendidikan Teknik Dan Kejuruan, 11(1), 27. https://doi.org/10.20961/jiptek.v11i1.18018

Faradian, H., Rubhasy, A., & Wijaya, Y. F. (2024). Analisis Sentimen Terhadap Penutupan Tiktok Shop Menggunakan Algoritma Naive Bayes Classifier Pada Media Sosial X. Jurnal Ilmiah Sains Dan Teknologi.

Ferdiana, R., Jatmiko, F., Purwanti, D. D., Ayu, A. S. T., & Dicka, W. F. (2019). Dataset Indonesia untuk Analisis Sentimen. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 8(4), 334. https://doi.org/10.22146/jnteti.v8i4.533

Fitri, D. A., & Putri, A. (2022). Analisis Sentimen Pengguna Aplikasi Google Meet Menggunakan Algoritma Support Vector Machine. Jurnal Computer Science and Information Technology (CoSciTech), 3(3), 472–478.

Fridayanti, R. (2023). Analisis Sentimen Review Pengguna APlikasi Photomath dengan Metode Support Vector Machine (SVM).

Handayanto, R. T., & Herlawati. (2020). Data Mining dan Machine Learning Menggunakan Matlab dan Python. Informatika.

Herdhianto, A. (2020). Sentiment Analysis Menggunakan Naïve Bayes Classifier (NBC) pada Tweet Tentang Zakat.

Herlinawati, N., Yuliani, Y., Faizah, S., Gata, W., & Samudi, S. (2020). Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine. CESS (Journal of Computer Engineering, System and Science), 5(2), 293. https://doi.org/10.24114/cess.v5i2.18186

Ipmawati, J., Saifulloh, S., & Kusnawi, K. (2024). Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 247–256. https://doi.org/10.57152/malcom.v4i1.1066

Mahardika, Y. S., & Zuliarso, E. (2018). Analisis Sentimen Terhadap Pemerintahan Joko Widodo Pada Media Sosial Twitter Menggunakan Algoritma Naives Bayes. Prosiding SINTAK 2018, 2015, 409–413.

Ngafifi, M. (2014). Kemajuan Teknologi Dan Pola Hidup Manusia Dalam Perspektif Sosial Budaya. Jurnal Pembangunan Pendidikan: Fondasi Dan Aplikasi, 2(1), 33–47. https://doi.org/10.21831/jppfa.v2i1.2616

Santoso, I., & Madiistriyatno, H. (2021). Metodologi Penelitian Kuantitatif. Indigo Media. https://books.google.co.id/books?id=bRFTEAAAQBAJ&printsec=frontcover&hl=id&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Sitanayah Que, V. K., Iriani, A., & Dwi Purnomo, H. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization (Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi , 9(2), 162–170. www.tripadvisor.com

Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta.

Telkom. (2021). Digitalization for a Better Future. Digitalization for a Better Future, 1–486. https://www.telkom.co.id

Ubaidillah, M. J., Munadhif, I., & Rinanto, N. (2019). Klasifikasi Gelombang Otot Lengan Pada Robot Manipulator Menggunakan Support Vector Machine. Rekayasa, 12(2), 91–97. https://doi.org/10.21107/rekayasa.v12i2.5406

Utomo, D. P. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. 4(April), 437–444. https://doi.org/10.30865/mib.v4i2.2080

Downloads

PlumX Metrics

Published

30-09-2025

How to Cite

Riany, Agus Fajar, Fenny Purwani, and Irfan Dwi Jaya. 2025. “Implementasi Support Vector Machine Dalam Analisis Sentimen Ulasan Aplikasi IndiHome TV Di Google Play Store”. Jurnal Saintekom : Sains, Teknologi, Komputer Dan Manajemen 15 (2):177-93. https://doi.org/10.33020/saintekom.v15i2.954.