Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.33020/saintekom.v13i1.352Keywords:
data mining, classification, Naïve BayesAbstract
Stroke is a disturbance of brain function, both local and general, that occurs suddenly, progressively, and rapidly due to non-traumatic brain blood circulation disorders that lasts more than 24 hours or ends in death. Stroke is also one of the deadliest diseases in Indonesia. In this study, stroke data was used to explore new information or knowledge in it. The process of extracting new information from a set of data is known as data mining. Therefore, this research aims to classify data related to stroke using the Naïve Bayes algorithm to find out whether the patient has a stroke or not. There are 10 attributes that are included in the causes of stroke, among others, gender, age, history of hypertension, history of heart disease, marital status, type of work, type of residence, glucose level, body mass index and smoking status. The results showed that classification with the Naïve Bayes algorithm can be applied in classifying stroke data resulting in an accuracy value of 92.48% in the Good Classification category.
Downloads
References
Arhami, M., & Nasir, M. (2020). Data Mining: Algoritma dan Implementasi. Andi Offset.
Bugis, H. (2022). Metode Naïve Bayes Untuk Memprediksi Penyakit Stroke. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan …. https://doi.org/10.47970/siskom-kb.v6i1.317
Doni, B. T. R., Susanti, S., & Mubarok, A. (2021). Penerapan Data Mining Untuk Klasifikasi Penyakit Hepatocellular Carcinoma Menggunakan Algoritma Naïve Bayes. Jurnal Responsif?: Riset Sains Dan Informatika, 3(1), 12–19. https://doi.org/10.51977/jti.v3i1.403
Haryadi, D., Marini Umi Atmaja, D., Rahman Hakim, A., & Suwaryo, N. (2021). Identifikasi Tingkat Resiko Penyakit Stroke Menggunakan Algoritma Regresi Linear Berganda. Deny Haryadi, SNTEM, 1(November), 1198–1207. https://doi.org/10.53026/sntem.v1i2.589
Kemenkes RI. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan RI, 53(9), 1689–1699.
Kesehatan, K. (2019). Kementerian Kesehatan Republik Indonesia. Kementerian Kesehatan RI, 1(1), 1.
Muktamar, B. A., Setiawan, N. A., & Adji, T. B. (2015). Analisis Perbandingan Tingkat Akurasi Algoritma Naive Bayes Classifier dengan Correlated-Naive Bayes Classifier. Seminar Nasional Teknologi Informasi Dan Multimedia 2015, 49–54.
Nugraha, F. F., Sunandar, I., & Juliane, C. (2022). Penerapan Data Mining Dengan Metode Klasifikasi Menggunakan Algoritma C4.5. Jurnal Teknologi Informatika Dan Sistem Informasi, 9(4), 2862–2869. https://jurnal.mdp.ac.id/index.php/jatisi/article/view/2399/1011
Nurlia, E., Jajuli, M., & Purnamasari, I. (2021). Penerapan Naïve Bayes Untuk Klasifikasi Tingkat Risiko Diagnosis Gigi Di Uptd Puskesmas Cingambul. JIKO (Jurnal Informatika Dan Komputer), 4(2), 127–132. https://doi.org/10.33387/jiko.v4i2.3190
Pambudi, R. E., Sriyanto, S., & Firmansyah, F. (2022). Klasifikasi Penyakit Stroke Menggunakan Algoritma Decision Tree C.45. Teknika, 16(2), 221 – 226–221 – 226. https://doi.org/10.5281/zenodo.7535865
Prasetyo, E. (2014). Data Mining: Konsep dan Aplikasi Menggunakan Mtlab. Andi Offset.
Ridwan, A. (2020). Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 4(1), 15–21. https://doi.org/10.47970/siskom-kb.v4i1.169
Siddik, M., Hendri, H., Putri, R. N., Desnelita, Y., & Gustientiedina, G. (2020). Klasifikasi Kepuasan Mahasiswa Terhadap Pelayanan Perguruan Tinggi Menggunakan Algoritma Naïve Bayes. INTECOMS: Journal of Information Technology and Computer Science, 3(2), 162–166. https://doi.org/10.31539/intecoms.v3i2.1654
Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta.
Suntoro, J. (2019). Data Mining: Algoritma dan Implementasi dengan Pemograman PHP. PT ELex Media Komputindo.
Suryani, & Hendryadi. (2018). Metode Riset Kuantitatif: Teori dan Aplikasi Pada Penelitian Bidang Manajemen dan Ekonomi Islam (2nd ed.). Prenademedia Group.
Testiana, G. (2018). Perancangan model prediksi kelulusan mahasiswa tepat waktu pada UIN Raden Fatah. JUSIFO (Jurnal Sistem Informasi), 4(1), 49–62. http://jurnal.radenfatah.ac.id/index.php/jusifo/article/view/1932
Written, I. H., Frank, E., & A., M. (2011). Data Mining?: practical machine learning tools and techniques. In Complementary Literature None.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Agus Fajar Riany, Gusmelia Testiana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.
Most read articles by the same author(s)
- Vina Fitriyanti, Gusmelia Testiana, Catur Eri Gunawan, Klasifikasi Predikat Kelulusan Mahasiswa Menggunakan Algoritma C4.5 , Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen: Vol. 14 No. 2 (2024): September 2024
- Agus Fajar Riany, Fenny Purwani, Irfan Dwi Jaya, Implementasi Support Vector Machine dalam Analisis Sentimen Ulasan Aplikasi IndiHome TV di Google Play Store , Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen: Vol. 15 No. 2 (2025): September 2025