Klasifikasi Predikat Kelulusan Mahasiswa Menggunakan Algoritma C4.5
DOI:
https://doi.org/10.33020/saintekom.v14i2.626Keywords:
Graduation Predicate, Data Mining, Classification, C4.5 AlgorithmAbstract
Determination of student graduation predicate based on GPA and additional requirements of timely study period for honors predicate. Currently, there is no in-depth classification to identify graduation predicate, so understanding of the patterns that influence the results is still limited. Accumulation of student graduation data can be used to find new information. This study aims to produce a decision tree classification model using the C4.5 algorithm and evaluate its accuracy in classifying student graduation predicates at UIN Raden Fatah Palembang. The data division technique used is k-fold cross validation to divide the data into training and testing data. The k value used is k = 3 in the first data test, this is based on previous tests with several k values, where k = 3 produces higher accuracy than the others. The rules formed are 242 and the attribute that influences student graduation predicate is GPA. The accuracy of the application of the C4.5 algorithm in classifying student graduation predicates is 83.31% which is included in the Good Classification category.
Downloads
References
Firdaus, A. F., Saedudin, R., & Andeswari, R. (2021). Implementation of Naive Bayes Classification Method in Predicting Student Graduation. E-Proceeding of Engineering, 8(5), 9274–9279.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: Data mining concepts and techniques. In Elsevier (Third Edit). https://doi.org/10.1109/ICMIRA.2013.45
Jollyta, D., Ramdhan, W., & Zarlis, M. (2020). Konsep Data Mining dan Penerapan. DEEPUBLISH.
Nasution, N. B., Hartanto, D., Silitonga, D. J., Lasimin, & Mardhiyana, D. (2022). Prediksi Lama Studi dan Predikat Kelulusan Mahasiswa Menggunakan Algoritma Supervised Learning. G-Tech?: Jurnal Teknologi Terapan, 7(2), 386–395. https://doi.org/10.33379/gtech.v7i2.2077
Novika, T., Okprana, H., Windarto, A. P., & Siahaan, H. (2021). Penerapan Data Mining Klasifikasi Tingkat Pemahaman Siswa Pada Pelajaran Matematika. MEDIA INFORMATIKA BUDIDARMA, 5(1), 9–17. https://doi.org/10.30865/mib.v5i1.2498
Rohman, A., & Mujiyono, S. (2021). Permodelan Prediksi Predikat Kelulusan Mahasiswa Menggunakan Decision Tree C4.5. Jurnal Prodi Teknik Informatika UNW "Multimatrix, III(2), 1–5.
Rudy Hendrawan, I. N., Budhi Saputra, I. M. A., Cahya Dewi, G. A. P., Adi Pranata, I. G. S., & Wedasari, N. L. N. (2022). Klasifikasi Lama Studi dan Predikat Kelulusan Mahasiswa menggunakan Metode Naïve Bayes. Jurnal Eksplora Informatika, 11(1), 50–56. https://doi.org/10.30864/eksplora.v11i1.606
Saputra, A., Fitri, T. A., Karpen, & Susanti. (2023). Penerapan Data Mining Algortima C4 . 5 Dalam Memprediksi Predikat Kelulusan Mahasiswa Di Politeknik Kampar. Sains Dan Teknologi Informasi.
Suhada, K., Elanda, A., & Aziz, A. (2021). Klasifikasi Predikat Tingkat Kelulusan Mahasiswa Program Studi Teknik Informatika dengan Menggunakan Algoritma C4.5 (Studi Kasus: STMIK Rosma Karawang). Manajemen Dan Sistem Informasi, 1(2), 14–27. https://doi.org/10.35969/dirgamaya.v1i2.182
Sukma, A. R., Halfis, R., & Hermawan, A. (2019). Klasifikasi Channel Youtube Indonesia Menggunakan Algoritma C4.5. Jurnal Teknik Komputer AMIK BSI, 5(1), 21–28. https://doi.org/10.31294/jtk.v4i2
Suweleh, A. S., Susilowati, D., & Hairani. (2020). Aplikasi Penentuan Penerima Beasiswa Menggunakan Algoritma C4.5. Jurnal BITe, 2(1), 12–21. https://doi.org/10.30812/bite.v2i1.798
Zafitri, Z., & Jambak, M. I. (2023). Karakteristik Pembatalan Reservasi Kamar Hotel Pada Online Travel Agent Menggunakan Algoritma C4.5. Indonesian Journal of Computer Science, 12(4), 2010–2023. https://doi.org/10.33022/ijcs.v12i4.3268
Zami, A. Z., Nurdiawan, O., & Dwilestari, G. (2022). Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree. Jurnal Sistem Komputer Dan Informatika (JSON), 3(3), 305–310. https://doi.org/10.30865/json.v3i3.3892
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vina Fitriyanti, Gusmelia Testiana, Catur Eri Gunawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright :
By submitting manuscripts to Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen, the author agrees with this policy. No specific document approval is required.
- The copyright in each article belongs to the author.
- Authors retain all their rights to the published work, not limited to the rights set forth in this page.
- Authors acknowledge that Saintekom Journal: Science, Technology, Computers and Management as the first to publish under the Creative Commons Attribution 4.0 International license (CC BY-SA).
- The author may submit the paper separately, arrange for non-exclusive distribution of the manuscript that has been published in this journal into other versions (e.g. sent to the author's institutional respository, publication into a book, etc.), by acknowledging that the manuscript has been first published Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen;
- The author warrants that the article is original, written by the named author, has not been previously published, contains no unlawful statements, does not infringe the rights of others, is subject to copyright exclusively held by the author.
- If the article is jointly prepared by more than one author, each author submitting the manuscript warrants that he or she has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to inform co-authors of the terms of this policy. Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen will not be held liable for anything that may arise due to internal author disputes.
Lisensi :
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY-SA). This license permits anyone to:.
- Share - copy and redistribute this material in any form or format;
- Adaptation - modify, alter, and create derivatives of this material for any purpose.
- Attribution - you must give appropriate credit, include a link to the license, and state that changes have been made. You may do this in any appropriate manner, but it does not imply that the licensor endorses you or your use.
- Similar Sharing - If you modify, alter, or create a derivative of this material, you must distribute your contribution under the same license as the original material.
Most read articles by the same author(s)
- Agus Fajar Riany, Gusmelia Testiana, Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes , Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen: Vol. 13 No. 1 (2023): March 2023